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Zusammenfassung

Eine Echtzeit-Strategie zur Bestimmung aktiver Nebenbedingungen
fur das schnelle Losen parametrischer quadratischer Programme
mit Anwendungen auf die pradiktive Moto rsteuerung

Beinahejeder Algarithmus zur modellpradiktiven Regelungberuht auf der Echtzeit-lesung
konvexerquadratischerProgramme. In dieserDiplomabeit wird eine ma geschneiderte
Echtzeit-Strategiezur Bestimmungaktiver Nebenbedingungerentwickelt, um parametrische
quadratischeProbleme{ wie sieim Rahmender modellpradiktiven Regeluncauftreten{ zu
losen. UnsereStrategie nutzt die Kenntnis der Losungdesvorhergehendemuadratischen
Problemsunter der Annahmeaus, dasssich die Mengeder aktiven Nebenbedingungervon
einemquadratischenProgramm zum nachstennicht wesentlichandert. Au erdem stellen
wir eineVariante vor, bei der die Rechenzeizum Zwecle realerEchtzeit-Anwendungerbe-
grenztwird. Eine e ziente Implementierungder vorgeschlagenetchtzeit-Strategiewird
detailliert beschrielen und ihre Leistungsfihigkeit anhandvon zwei ansguchsvollenTest-
beispielernaufgezeigt. Einesdavonwurde zur SteuerungeinesrealenDieselmotos entwor-
fen, bei der jedesder quadratischenProgrammeinnerhalb weniger Millisekundengelbst
werden muss. In den vorgestellten Beispielenzeigt sich, dass unsere Echtzeit-Strategie
etwa eine Gre enordnung schnellerals herkemmliche(Warmstart-)Algorithmen zur Lesung
guadratischeProgrammeist.

Schhisselverter: modellpradiktive Regelung parametrischequadratischeProgrammierung,
Echtzeit-Strategiezur Bestimmungaktiver NebenbedingungenEchtzeit-Optimierung Mo-
torsteuerung

AMS-Klassi kationen: 90C20,34H05,93B52,62P30
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Abstract

Nealy all algaithms for model predictive control (MPC) rely on solvingconvexquadratic
programsin real-time. In this thesis,we developa speciallytailored onlineactive setstrategy
for the fast solutionof parametric quadraticprogramsarisingin MPC. Our strategyexploits
solution information of the previousquadratic program (QP) under the assumptionthat

the set of active constraintsdoesnot changemuch from one QP to the next. Furthermae,

we presenta modi cation wherethe CPU time is limited in order to make it suitable for

strict real-time applications.An e cient implementationof the proposedonline active set
strategy is descrited in detail and its perfamanceis demonstratedwith two challenging
test examples. One of thesewas designedfor controlling a real-world Dieselenginewith

samplingtimes of a few milliseconds.In these examplesour strategy turns out to be an

order of magnitudefasterthan a standad active set QP solver(with warmstarts).

Key words: model predictive control, parametric quadratic programming,online active set
strategy real-time optimisation, enginecontrol
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Notation

Symbols
Scalar Sets
A working set
A(X) index set of active constraintsat point x
F working set of free variables
F(x) indexset of free variablesat point x
| working set complement
1(x) index set of inactive constraintsat point x
N set of natural numbers (greater than 0)
R eld of real numbers
R o set of nonnegativereal numbers
R-o set of positivereal numbers
T time harizon of the controlledprocess
Tp prediction harizon
X working set of xed variables
X(x) indexsetof xed variablesat point x

Vector and Matrix Sets

CRa critical regionof an optimal active set A
D domainof a real function
F feasibleset of a quadratic program
P set of feasibleparametersof a parametric quadratic program
R" set of real n-dimensionalectas
RM N setof realm n-dimensionamatrices
Sn set of real symmetricn  n-matrices
S set of real symmetricpositive semi-de niten  n-matrices
SHN set of real symmetricpositivede nite n  n-matrices
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Notation

Mo del Predictive Control

O o W >

tstart
tend
tp
u(t)
x(t)
y(t)
X(t)

systemdynamicsmatrix (assaiated with processstates)
systemdynamicsmatrix (assaiated with processinputs)
constraintfunction

output matrix (assaiated with processstates)
samplingtime

output matrix (assaiated with processinputs)
systemdynamicsODE right hand side

algelvaic equationsfunction of a DAE system
constraintvecta

constraintmatrix (assaiated with processoutputs)
constraintmatrix (assaiated with processinputs)
number of algelraic equationsof a DAE system

length of discrete-timeprediction harizon

number of processparameters

number of processinputs

number of di erential processstates

number of processoutputs

number of algelvaic processstates

Lagrangeterm of objectivefunction

Mayer term of objectivefunction

vecta of processparameters

terminal penalty weight matrix

objectivefunction matrix (assaiated with processoutputs)
objectivefunction matrix (assaiated with processinputs)
time

start time of the controlled process

endtime of the controlledprocess

length of prediction harizon

vecta of processinputs

vecta of di erential processstates

vecta of processoutputs

vecta of algebraic processstates

Quadratic Programs

IF &||I&F o

constraintvecta

lower bound vecta

upper bound vecta

lower constraints'bound vecta
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Notation

S 33I0Oe0F]
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N><T|o

Wo
x (K)
y®
¥ 0Pt
yopt

Algorithm

PUN®)

max

<

upper constraints'bound vecta

active constraintsmatrix

gradientvecta

constraint matrix

Hessianmatrix

number of constraints

number of variables

number of constraintswithin working set A
number of equality constraints

number of free variableswithin working set F
number of xed variableswithin working set X
dimensionof restricted null spaceof active constraintsmatrix
initial value parametervecta

kth iterate of the primal vecta

kth iterate of the dual vecta

primal solution vecta

dual solution vecta

indicatesa homotopy from one QP to the next

orthonarmal factor of TQ factorisation of Cg

upper triangular Choleskyfactor of projected Hessianmatrix
homotopy parameter

maximum primal-dual stepsizewithin current critical region
reverseower triangular factor of TQ factorisation of Cg
matrix containingorthonormal basisof the range spaceof Cg
matrix containingorthonormal basisof the null spaceof Cg

Test Examples

weighting factor for di erence of end position of the free end of the chain
weighting factor for balls' velccities

weighting factor for control action

spring constant

gravitational acceleration

spring's rest length

massof a singleball

wall's position alongthe secondcoordinate axis

desiredend position of the free end of the chain
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Notation

Gasoline Engine

Others

actuatedthrottle angle

openingarea of the throttle

EGRspeci ¢ constant

speci ¢ heat at pressureof freshair insidethe intake manifold
speci ¢ heat at exhaustgaspressure
speci ¢ heat at volumeof intake manifold
volumetrice ciency

combustione ciency

speci ¢ heatratio

enginetorque

calai ¢ heat of the fuel

throttle speci ¢ constant

EGRspeci ¢ constant

massof freshair insidethe intake manifold
massof exhaustsinsidethe intake manifold
enginerotational speed

NOy emissions

ambientpressure

exhaustgaspressure

intake manifold pressure

air densiy

gasconstant

gasconstantof intake manifold

time lag of exhaustgas

temperature of exhaustgas
temperatureinsidethe intake manifold
openingangleof EGRvalve
enginedisplacement

volumeof intake manifold

mass o w rate from intake manifoldto cylinders
mass o w rate through EGRvalve

fuel mass ow rate

mass o w rate through throttle

innity
for all
there exist
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Notation

9!

there existsexactly one

emply set

power set of setM

end of proof

end of theaem, lemma, carollary or de nition

Mathematical Expressions

Constants

o'l ()
ldp
Id",

Others

imM
M 2
condM

£(t)
(1)

O()

real matrix of appropriate dimensionswith all elementszero

real columnvecta of appropriate dimensionwith all componentsone
i-th column of the identity matrix with appropriate dimension
Givensplanerotation in the (i; j) coordinate plane
n-dimensionaidentity matrix

n-dimensionakeversedentity matrix

baseof the natural logarithm

twice the value of the smallestpositive root of the real cosinefunction

closedinterval of real numbers

openinterval of real numbersor two-dimensionatow vecta

de nes the symiol on the left to equalthe expessionon the right
de nes the symiol on the right to equalthe exgessionon the left
assignghe valueof the variable on the left to the variable on the right
transposedof matrix or vecta M

inverseof regula matrix M

pseudoinversef matrix M

absolutevalueof a real number or cardinality of a set
Euclideannarm of a matrix or vecta

rangespacespannedby the columnsof matrix M

squae root of matrix M , i.e. M2M 2 = M

condition number of matrix M

rst derivativeof function f with resgectto time t
secondderivativeof function f with respect to time t

restriction of functionf to setX

big-O notation
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Notation

Abbreviations and Acronyms

Besidescommon expessionsand Sl units the following ablreviationsand acronymsare

used:

BDF
CO,
CPU
DAE
EGR
HC

i

IVP
LICQ
LP
KKT
MAF
MAP
MPC
MUSCOD
NLP
NMPC
NO
OASES
ODE
QP
RHC
m
SQP
St
VGT
wWT

backward di erentiation formulae

cabon dioxide

central processingunit

di erential algelyaic equation
exhaustgasrecirculation

hydrocarbon

if and only if

initial value problem

linea independenceconstraintquali cation
linea program

Karush-Kuhn-Tucker

massair ow

manifold absolutepressure

model predictive control

multiple shaoting code for direct optimal control (software paclkage)
nonlinea program

nonlinea model predictive control
nitrogen oxide

online active set strategy (software module)
ordinary di erential equation

guadratic program

recedingharizon control

revolutionsper minute
sequentialquadratic programming
subjectto

variable geometryturbochager

variable valvetiming

Xviii



Chapter 1

Intro duction

Model predictivecontrol (MPC) is an advancedcontrol strategywhich allowsto determine
inputs of an arbitrary processthat optimisethe forecastedorocessbehaviour. Theseinputs,
or control actions, are calculatedrepeatedly using a mathematicalprocessmaodel for the
prediction. In doing so, the fast and reliable solution of convexquadratic programming
problemsin real-timebecomesa crucialingredientof nealy all algaithms for both linea and
nonlinea model predictive control. The succesof linea MPC|where just one quadratic
program (QP) needsto be solvedat eachsamplinginstantjcan evenbe attributed to the
fact that highly e cient and reliablemethaods for QP solutionhaveexistedfor decadesand
that their computationtimes are much smallerthan the requiredsamplingtimesin typical
applications. On the other hand, in nonlinea MPC algaithms, quadratic programsoften
ariseas subpoblemsduring the iterative nonlinea solution procedure,sothat not only one,
but severalQPs needto be solvedat eachsamplinginstant. In most MPC algaithms, the
arising QPs are treated by well-testedand e cient standad methods from optimisation.

The requiredsamplingtime, i.e. the time di erence betweentwo re-optimisations strongly
dependson the velacity of the processdynamics. In practice, it normally varies between
somesecondsor minutes, e.g. if huge distillation columnsor polyethyleneplants are to
be controlled (cf. [25)], [2€] or [1€]), and a few milliseconds. Very shat samplingtimes
especiallyariseif MPC is appliedto fast mechanicakystemsg.g.in the veryrecent eld of
optimal control applicationsin the automotivearea. Therein, enginecontrol is a particular
challengedue to very fast and nonlinea dynamics,making samplingtimes in the order of
millisecondsecessy.

When samplingtimes becomeso shat that the computationtimes for QP solution can no
longerbe neglected,specialisedalgaithms that exploit the structure of the QPs arising in
MPC problemsbecomean interesting alternative. Basically two approachesto fast QP
solutionin MPC can be distinguished:

() First, the explicit, or oine QP solution which precomputesthe QP solutionfor all
possiblyarising probleminstances.This canbe donequite e ciently , asshavn by [8],
but is limited to modelswith smallstate dimensiongbelow ten) and few constraints.

(i) Second,the online QP solution is the classicalway to treat the sequenceof QPsin
MPC for varying initial values.



Chapter 1. Intro duction

SeveralQP solution methads exist, among the most prominent are active set methads,
which comein two variants, namelyprimal [34], [39] and dual [45], [3] active set methads.
Unfortunately, for active setmethods no polynomialbound on the runtime of the algaithm
can be given, as hasfamouslybeenshovn by Klee and Minty [5€] in the context of linea
programming. Furthermae, (primal-dual) interior point methads, cf. [91], havebecomea
strong competitor to active set methads, and havealsobeenproposedfor usein MPC [[73].
They possesselatively constant computationaldemandsand a polynomial runtime gua-
antee can be givenfor them. However, interior point methads su er from the drawback
that sofar no e cient warm start techniquesexist.

In this thesisa new active set strategyis proposed(seealso[30], [2Y)) that is inspiredby

someimportant observationdrom the eld of parametric quadratic programmingand can

neither be classi ed primal nor dual. It builds on the expectation that the active set does
not changemuchfrom onequadraticprogramto the next, but is di erent from conventional
warm starting techniques.Our online active set strategy comesin two variants: while the

rst is just an alternative way to exactly solvethe QPs arising in MPC e ciently (but

without thearetical runtime limit), the secondoneis ableto give a CPU time guaantee.

This guarantee, however, comesat the expenseof sometimesnot solvingexactly the QP

that we want to solvewithin the givensamplingtime. In thesecircumstances|that arise

e.g.after largedisturbance®f the controlledprocess|an intermediateQP that liesbetween
the previousproblemand the current oneis solved,instead.

An implementationof the proposedonline active set strategy the software module OASES
was tested on two test examplesand its perfaomancewas compaed to that of existing
methads for solving QPs, namelythe primal active set solvergpsol [[6Z] and an imple-
mentation of the explicit approach[d]. The rst test exampleis a variant of a challenging
benchmak problem (rst presentedin [8€]) wherea chain of sgring connectedmassess

regulatedbackinto its steady-stateafter a strong excitation. Secondwe aim at controlling

areal-world Dieselengineat the Institute for Designand Control of MechatronicalSystems
in Linz, Austria.

The thesisis arganisedasfollows: in Chapterdthe requiredandmotivating thearetical back-
ground of model predictive control, with focus on linea MPC, and parametric quadratic
programmingis briey summaised. Afterwards, Chapter[3 reviewsseveralexisting and
widely usedmethads for solvingquadraticprograms. Our onlineactive set strategy includ-
ing its real-time variant, is presentedin Chapterd which also containsa shat discussion
on degeneracyhandling and implementationdetails. The mentionedtest problemsform
the basisof a perfamanceanalysisof the proposedonline active set strategyin Chapterdd
and@ Finally Chapterld is devotedto a conclusionand someideasfor future work.

The appendicesompisemathematicalbasicgAppendixiAl) andanimplementationoverview
of the software module OASE$AppendixB). Ultimately, an application of fast nonlinea
model predictive control to a gasolineengineis presentedin Appendix[3 which initiated
the developmenbf our online active set strategy from a practical point of view.



Chapter 2

Theoretical Background and
Motivation

This chapterbeginsby introducing the conceptsof model predictive control. Putting the
focus on linea model predictive control naturally leadsus to the descriptionof a special
optimisation problem, the so called (parametric) quadratic program We shav how its
particular structure is exploitedby the recentlydevelogd explicit solution apgroachwhich
motivated the proposedonline active set strategy

2.1 Model Predictive Control

Main conceptof model predictive control (MPC) is to repeatedlycalculatecontrol actions
whichoptimisethe forecastedorocessbehaviour. The predictionis basedon a mathematical
processmodel leadingto a so-calledopen-lcop optimal control problemwhich is solvedat
eachsamplinginstant. The optimisedcontrol action is appliedto the systemuntil the next
samplinginstant whenan updated optimal control problem, incaporating the new process
state, is solved.Hence,model predictive control is a feedbackcontrol strategy sometimes
alsoreferredto asrecedingharizon control (RHC).

A (continuous-time)processmodel for a time inteval T def [tstart;tend] R, 1 < tstart
tenda 1, consistsof

1. processinputs, or controls or manipulatedvariablesu: T | R,
2. processstates dividedinto

(a) dierential statesx: T ! R"™ and
(b) algebaicstatesz: T ! R"z

3. processparametersp 2 R"r

4. processoutputs, or controlledvariablesy: T ! R",

andde nesamapping(in function spacesfrom a suitablesubsetof processnput functionﬂ
to the setof processoutput functions. This mappingis implicitly givenby aninitial process

E.g. the setof all processinput functions suchthat (ZZI1) has a unique solution and (219 is de ned
forallt2 T.



Chapter 2. Theoretical Background and Motivation

state valueand a systemof di erential algelvaic equatiors (DAE)

X(tstart) = Wo; (2.1.1a)
x(t) = f tx@®);z@t);u(t);p 8t2T; (2.1.1b)
= g tx(@);z@®);u);p 8t2T; (2.1.1¢)
aswell as
y) L9 6 x():z():p 8t2T; (2.1.2)
WhereW()Z Rnx,f : Df R1+nx+nz+nu+np I Rnx,g: Dg R1+nx+nz+nu+np I Rng,

andg: Dy RMMFNtne 1 Ry

It shouldbe notedthat there existsa greatvariety of di erent model typeswithin the MPC
context which can be roughly divided into rst principlesmaodels and identi ed models.
First principlesmodelstry to replicate, e.g., physicalor chemicallaws of nature whereas
identi ed modelsare basedon empiricalmeasurementsf the real process. The de nition
givenaboveis suitedfor dynamicalrst principlesmaodelswhichwill be usedthroughoutthis
thesisexceptfor Chapterl@d In the latter casedynamicalidenti ed models are usedwhich
were obtained by choosing the so-calledstate-spacerepgresentation (ZZI7)-(Z12) such
that it best matchesthe measurednputs to the measuredoutputs. An important class
of identi ed modelsare so-calledstep or impulserespnsemodels, which do not include
processstatesand are descriled in more detail in [[I§]. Another approach, which doesnot
clealy t into the mentionedcategaies, is the usageof neuralnetwork models[l69). Further
exampledor the di erent modeltypesandtheir applicationin industry canbe foundin [[7Z].

Model predictive control usesa processmodel in order to forecastthe processdynamics
aswell asthe processoutputs and calculatesinputs which optimisethis predicted process
behaviourwith respect to a so-calledobjectivefunction and subjectto desiredconstraints.
The forecastingis perfaomedfor a certainperiod, the predictionharizon of lengtht, 2 R,
by integrating the model equations(ZZL).

A (continuous-time)objectivefunction measureghe processperfamanceoverthe predic-

tion harizon Ty def [to;to+ tpl, to 2 [tstartstend  tp], @andis usuallyof the following Bolza

type:

tyFtp

ty(t);u(t) dt+  y(to+ tp) ; (2.1.3)

to
where : D R*Ny v 1 Rand : D R"™ | R are calledLagrangeand
objective function!Mayer term, resgectively Note that the Lagrangeterm measureshe
processperfamanceduring the prediction harizon whereaghe Mayer term only evaluates
the processoutput at the end of the prediction harizon. We usethe commonconvention
that the objectivefunction is formulatedin sucha way that we aim at minimisingits value.

One of the most important featuresof MPC is its capabiliy to guaantee that process
inputs or outputs satisfy desiredconstraintswhich can be written in the following general
form

I c ty(t);u(t);p ; (2.1.4)

4



2.1. Model Predictive Control

wherec : D, RYM*Mu*np | RNc js g suitable function de ning, together with
| 2 R", n. inequaliy constraints. It is obviousthat also equality constraintscan be
expressedusingthis formulation (although they could be includedin g, too).

With theseingredients,namelyEgs. (ZZ1.D)-([Z.1.9), we are ableto formulate

De nition 2.1 (open-loop optimal control problem): An open-loop optimal control prob-

lemoverthe predictionharizon T, def [to;to+ tp], tp 2 Rs o, isthe taskof nding anoptimal
processinput u(t) solving

tttp
OCP(tp) : X(tr;r;lizr(wt); ty(t);u(t) dt+  y(to+ tp) (2.1.53a)
ut)iy(® g
sit: X(to) = wo(to); (2.1.5b)
x(t) = f tx();zt);ut);p 8t2 Tp; (2.1.5¢)
= g t;x(t);z(t);u(t);p 8t2 Ty, (2.1.5d)
y(t) = 9 tx(t);z(t);p 8t2 Tp; (2.1.5e)
I c ty(t);u(t);p 8t2 Tp; (2.1.5f)

wherethe notation wy(tp) indicatesthat the inital processstate dependson the starting
time to.

Let us assumehat the processto be controlledvia MPC starts at time instant t 55t , €nds
at time instantteng (1 < tstart < teng < 1 ) andthat

to< t1 < i< thngume » Nsample 2 N; (2.1.6a)

to € totart ) thgme = tend (2.1.6b)
is a sequencef samplinginstants satisfying

ti ti 1 tp 8121 Nsampled : (2.1.7)

After the solution of OCP(t;) the optimal processinput u°?'(t) is appliedto the process
until the next samplinginstanttj,; . Thenthe current processstate is obtained(measured
or estimated) and the optimal control problem OCP(ti+1) is solvedwith this updated
initial valuefor the processstate. This yieldsthe model predictive control conceptwhich
is summaisedin Algorithm 2 and illustrated in Fig. 21

Onemay askwhy it is necessg to solvethe open-loop optimal control problemrepeatedly:
If onewould chooset def tend tstart it wouldsu ce to solvethe rst problemOCP(tgiart)
and to apply the resulting justi ed if one assumes,from a purely theaetical point of
view, that the model descrilesthe real processexactly and that all inputs can be applied
instantaneouslyto the real process.

However, theseconditionsare neversatis ed in a real-world environment: exceptfor very
rare casesthere are always discrepanciedetweenthe model and real process,known as
model-plantmismatch asthe realprocessstoo complexto modelit exactly Sometimeshe

processdynamicsare not evenknowvn completelymaking approximationsor interpolations

5



Chapter 2. Theoretical Background and Motivation

necessy. Moreover, unknavn disturbancesare almost always presentin real-world and

measuremen‘nois@ impedesthe exact determinationof the initial processstate. On the

otherhand,the calculatedoptimal inputs often cannotbe appliedexactlyto the realprocess.
Sinceactuatas, valvesand evenelectronicdevicesneeda shat time period, knowvn asdead
time, to react, thereis alwaysa shat delay in the applicationof the optimal inputs (although

this could be counteractedby prediction). A further delay stemsfrom the fact that the

controller needssometime to calculatethe new optimal inputs. And evenif thesedelays

are negligible,deviationsbetweenthe optimisedand the appliedinputs may occur because
the actuatas are not able to behavelike an, in principle, arbitrary (measurable)function

u(t) includingdiscontinuities.

All thesecircumstancesnake a feedbackcontrol strategymandatay for a real-world setup.

The incarporation of the current processstate (as initial value) at eachsamplinginstant

adjuststhe predicted processbehaviourto the real one leadingto mare reliable results.
Normally the more severethe above-mentioneck ects are the more samplinginstants are

chosen.If the samplinginstants are chosenequidistant i.e.

t t . ,
def lend ‘Istart . . def 81211 Nsamplel ; (2.1.8)

Nsample

we call 2 R the samplingtime.

Algorithm 2.1 (model predictive control concept)

input: open-loop optimal control problem OCP(ty),

sequencedf samplinginstantsto; t1;:::;tn,, . 1 asdenedin (Z15
output:  piecewisade ned optimal processinputs u°? : [tsiart ;teng] ! R™
(1) Seti 0.

(2) Obtain current processstate wg(tj) and formulate OCP(t;).

(3) Obtain u®Pt(t), t 2 [ti;ti + tp], by solvingOCP(t;).

def

(4) Set u°Pt(t) = u®Pt(t) 8t 2 [ti;tj+1] and apply u°Pt(t) ., 1O the processuntil

ti+g .
(G) if i=nsampe L
stop!
else
Seti i+ 1 andcontinuewith step (2).

2We should emphasisethat the current processstate wo is neverknown exactly in practice sinceit has
to be obtained by meansof (more or less)inaccurate senses.

6



2.1. Model Predictive Control

y(t)

T LIS
aamm" LS

uoPt(t
#IL .................
f >
to to + to+ tp t

Figure2.1: Main conceptof model predictive control.

So far, our model predictive control formulation has beenrather generalas we did not

pose further conditionson the functionsf, g, ¥, ¢, o . Thesefunctions should be

su ciently smaoth, e.g.twicecontinuoushydi erentiable, in orderto guaanteethe existence
(and uniquenesspf a solution but they can, in principle, be arbitrary nonlinea functions.
The open-loop optimal control problemsarising in this nonlinea model predictive control

(NMPC) context can, e.g., be solvedusingthe direct multiple shaoting method (see[1Y],

[14], |23, [24]) which is briey summaised in Appendix[d where also an application
exampleis given.

For easeof notation we eliminatethe explicit dependencief f , g, §, c ont and p, which

can be donewithout lossof generaliy:

Our de nition allows processmodelsdependingexplicitly on time; most presentations
onthis topic, however,requirethe procesanodelto betime-invaiant, or autonomous

Explicit time dependencecan be eliminatedif an additional state x,,+1 (t) and the

additional di erential equation

Xne+1 (tstart) = tstart ; (2.1.9a)
Xnye+1 (t) 1 8t2T (2.1.9b)

is introduced.

Processparameterscan be written asdi erential statesby introduction of additional

statesxn,+i(t), 1 i np, andimposingthe additional equations
Xne+i(lstart) = P 8i2fL::inpg; (2.1.10a)
Xpe+i(t) = 0 8t2T 8i2fl:i:;npg: (2.1.10b)



Chapter 2. Theoretical Background and Motivation

The following presentationis restrictedto time-invaiant, linea open-lcop optimal control
problemsasthey are more directly linked to the utilisation of the proposedonlineactive set
strategy Furthermae, from now on we make the assumptionthat the processmodel does
not includealgebraic variables. This meansthat the processstate is descrited by a system
of ordinary di erential equatiors (ODES)

X(tstart) = Wo; (2.1.11a)
x(t) f ox();ut) 8t2T; (2.1.11b)

insteadof a DAE system(IZZL). This assumptionis very commonwithin the linea model
predictive control community.

2.2 Linear Mo del Predictive Control

The namelinea model predictivecontrol refersto situationsin whicha linea time-invaiant
processmodel, linea constraintsand a quadratic objectivefunction is used. This doesnot
imply that the real processto be controlledhaslinea dynamics.

A (continuous-time)processmodel is calledlinea time-invaiant (LTI) if it canbe written
in the form

X(tstart) = Wo; (2.2.1a)
Xx(t) = Ax(t)+ Bu(t) 8t2T; (2.2.1b)
y(t) = Cx(1) 8t2T; (2.2.1c)

with constanf] matricesA 2 R"™ x B 2 R™ M C 2 R"% ™,  Sincealmostall real
processesxhibit nonlineaities, linea processmodels are often obtained by lineaising a
nonlinea model at someworking point, narmally at a steady-state

De nition 2.2 (steady-state): Everypair (X; &) satisfying
= f %0 (2.2.2)
is calleda steady-stateof a systemof ordinary di erential equations
x(t) = f x(t);u(t) 8t2T: (2.2.3)

This meansthat a processis at a steady-statel it remainsthereif input @ is applied.

Constraintsfor a processmodel are calledlinea i they canbe written as
I My(t) + Nu(t); (2.2.4)

with constant matricesM 2 R" "y N 2 R"¢ ™ and a constantlower bound vecta
| 2 R"c. Asa specialcaseof (ZZ32), in mostlinea MPC problemsat leastboundson the
inputs and outputs are imposed,i.e.

u u(t) U 8t2T; (2.2.5a)
y yt)y y 8t2T; (2.2.5b)

SLinear time-variant processmodels allow for time-varying matrices A(t), B(t) and C(t).

8



2.2. Linear Mo del Predictive Control

whereu; U 2 R"™ andy; y 2 R". Input boundstypicallyexpgessphysicalimitations of the
actuatars, output boundsare often necessg to ensuresafeprocessoperating conditions.

The objectivefunction (of Bolzatype) is (convex)quadratici it canbe written as
tprtp
> (V) Yrer) QY()  Yrer) + (U(t)  Urer) R(U(t)  urer) dt

to

POt t) Ve P (y(to+ 1) yee)

(2.2.6)

with constantmatricesQ 2 S™, R 2 S, P 2 S™}, and constantreferencevalue vectas
Yret 2 R, Urer 2 R,

Matrix Q|w e will discussthe meaningof P laterma y penalisedeviationsof the pro-

cessoutputs from a certain referencevalue, therefae positive semi-de nitnessis assumed.
Matrix R is requiredto be positive de nite in order to penalisedeviationsof the process
inputs from a desiredreferencevalue. Positive de nitenessof R is alsonecessy in order
to ensurethat the resulting optimisation problem is strictly convex,as will be shovn in

TheaemPZ2 MPC problemswith this type of objectiveare often referredto asreference

tracking problems alsotrajectory tracking problemswherey et andues vary with time are
conceivable.In the special casewherey(t) d=e'(x(t) 8t 2 T, Vet def , Uref def they aim at

regulating the processto the origin.

After thesepreperationswe can give the following

De nition 2.3 (linear open-loop optimal control problem): A linea open-locop optimal

control problemoverthe predictionharizon T, def [to;to+ tp], tp 2 Rs o, isthetaskof nding
an optimal processinput u(t) solving

tyt tp

OCPin(to): min = (/O Ye) QD) Vie) + (UO) trer) R(U(Y)  ier) o
y(t) to

+ 2 O(to* 1) yie) P (¥lto+ ) Yer) (2.2.72)
sit: X(tg) = wo(tp); (2.2.7b)
x(t) = Ax(t)+ Bu(t) 8t2Ty; (2.2.7¢)

y(t) = Cx(t) 8t2 Tp; (2.2.7d)

I My(t)+ Nu(t) 8t2Ty; (2.2.7¢€)

whereall quantitiesare de ned asin Egs. (ZZ7), (ZZ39), (ZZ9).

2.2.1 Problem Discretisation

If u(t) is alloved to be an arbitrary measurableeal-valuedfunction, OCPy;, (and its gen-
eralisationOCP) is anin nite dimensionalover R) optimisation problem. Although there
exist necessy conditions|based on the calculusof variations or Pontryagin's maximum
principle [49)], [Z0]|fo r nding the optimal solution of suchproblems,theseso-calledindi-
rect methads are of limited usefor MPC purposes(cf. [12, p.85-87]).

9



Chapter 2. Theoretical Background and Motivation

Direct methods parameterisethe control functionsin order to reducethe optimal control

problemto a nite dimensionalone. This lossof degreesof freedomgreatly simpli es the

solution of the problem but is normally irrelevantfor processperfamancein practice. A

very popula control parameterisationis to requirethat the control functionsare piecewise
constant (or piecewisdinea) on an equidistantgrid, as anticipatedin Figurel2Z1l If the

predictionharizon[to; to+ tp] is dividedinto ny, intervalsof length def rt]—"p this canformally
be written as:

def

u(to+i p+t) = u 8t2][0 p) 8i2f0;:::;np 1g; (2.2.8a)
uto+ tp) = un, 1 (2.2.8b)

withu; 2 R"™,0 i np 1. Ingeneral,it is reasonablgo choose
»E 2N (2.2.9)

After a control parameterisationthe trajectories x(t) and y(t) can be expessedas func-

the optimal control problem OCPy;, is transfamed into a quadratic program (QP) which
compisesa quadraticobjectivefunction andlinea constraintﬂ. Direct methads are usually
subdividedinto three main variants depending on the way in which thesetrajectories are
evaluated:

direct singleshooting integratesthe ODE systemover the whole prediction horizon
at oncefor xed valuesof wg and u;;

direct multiple shooting [15] solvesthe ODE systemindependentlyon eachinterval
[to+i pito+ (i+ 1) p]byintroducingadditionalintermediateinitial valuesand
adding continuity constraintsto the NLP (seeSectionlC.4 for further details);

direct collocation [/9 approximates the trajectory x(t) by piecewisepolynomials
which satisfythe ODE only at a the points of a ne grid.

Also the constraintsneedto be discretisedand their ful Iment is ensuredonly at a nite
number of time instants,e.g.atto+ i p, 1 i np 1. Similaly, the continuous
objectivefunction is evaluatedon a discretetime-grid only (of course,this is always done
whenusing numericalguadratureformulae).

For the solution of linea open-loop optimal control problemsa direct single or multiple
shooting approachis often appropriate. Therefae we parameterisethe controls, or process

The objectivefunction aswell asthe constraintsare evaluatedonly at the time instants of
this grid and thus the valuesof the trajectoriesx(t) andy(t) are calculatedonly there. We
endup with a

“In the general casethe optimal control problem OCP is transformed into a nonlinea programming
(NLP) problem with a nonlinea objective function and possiblynonlinea constraints.

10



2.2. Linear Mo del Predictive Control

De nition 2.4 (discrete-time linear open-loop optimal control problem): A discrete-
time linea open-loop optimal control problem over the discrete-time prediction harizon

Tgisc":Efka;:::;k0+ np 19, np 2 N, is the task of nding a sequenceof constant
optimal processinputs U,; :::;Ukg+n, 1 Solving
. 1ko'b<‘lp 1
OCP{(ko) 1, .min 2 Wk Yre) Rk Yrer) + (Uk  Urer) R (U Urer)
Vg yk§+n§ k=ko
Uk il kg+np 1
1
+ E YKo+np Yref OP YKo+np Yref (2-2-103-)
Sit: Xk, = Wo(ko); (2.2.10b)
Xeer = A%+ BUCy, 8k 2 TS, (2.2.10c)
Yk = Cxy 8k 2 TYC[ fko+ npg; (2.2.10d)
| Myg+ Nug 8k 2 T9C; (2.2.10e)

whereall quantities, exceptfor A4SC 2 R™ Nx and BY¢ 2 R"™x Mu  gre de ned asin

Egs.(Z27), (£29), (Z29).

The discrete-timesystemmatricesA %S¢ and B 9¢ can be calculatedfrom their continuous
counterpats: standad calculusleadsto the solution of the ODE system(ZZ.7d

7t
x(t) = €t WAK(t)+ & 9ABy(s)ds 8t to: (2.2.11)

to

If the processinput on the intervall [Ko; k1] def [to;to + p] hasconstantvalueug 2 R",
the processstate at time instantto + , is

tzk p
X(to+ p) = €l p Ax(tg) + glo* » SABY(s)ds (2.2.12a)
0" 1
tg- p
F{pzf]‘, X(t)) + @ et » 9ABdsK up:  (2.2.12b)
= Adisc to
ol I {z }

= pBdisc
def

It is easyto shav by induction that the processstatesat all time instantsin Tgisc canbe
obtained via the samematrices A%S¢ and B %S¢ accadingly, providedthat the valuesof
Tg's¢ are equidistant For easeof notation, we drop the superscript\ 4s¢" from Adise, g disc
and Tg‘SC in the remainderof this thesisif an equidistantdiscrete-timeprediction horizon

is used.
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Chapter 2. Theoretical Background and Motivation

2.2.2 Closed-Loop Stability

Now, we will give a shat discussionon the meaningof the so-calledterminal penally
weight matrix P in Eqgs. (229, (ZZ79 and (ZZI03d. It is introducedin order to
compensatethe niteness of the predictionharizon T,: dueto (online) solutioncomplexiy
the prediction horizon is usually much shater than the total runtime of the controlled
process,i.e. t tend tstart- Thus it may happen that optimal processinputs for the
time interval[t;; t; + t,] leadto very poor processperfamanceafterwards. Of course there
will be re-optimisationsuntil t; + t, but too shat-sightedactionscan spoil future behaviour,
anyway, and it may evenhappenthat the controller causeghe processto stat oscillating.
This observation,which has also great practical relevance,is topic of a huge number of
articles which investigate(necessgy and) su cient conditionsfor stability of a controlled
process(seee.q. [7€], [55], [13, [20], [6]] and the referencegtherein).

We considera (discrete-time) time-invaiant linea processmodel as descriled by equa-
tions (ZZI00)-(Z2.104d. Let us assumethat the caresmpnding optimal control problem

OCPUisc(ko) is feasiblefor all wo %" wo(ke) 2 R™ and its (unique) optimal solution is
valuedmapping

J: R™ I RMW

(2.2.13)
wp 7! uko(WO) ;

which enablesusto write the ODE systemof the closed-l@p controlled processmodel as

Xk, = Wo; (2.2.144a)
Xes1 = AXg+ BI(x) 8k2T, (2.2.14b)
= (A+BJ)(xx) 8k2T,: (2.2.14c)

If (®; @) 2 R"x*Mu denotesan arbitrary steady-stateof the processmodel and

Vet = CR; Uer & 0 (2.2.15)

ischosenJ(®) = 0 holdsbecausehe objectivefunction hasoptimal valueO for the choice
Ug = 08i2f0;:::;n, 1g. Thus, if the closed-l@p controlledprocessis at this steady-
state it will stay there. The controlledprocessis calledclosed-l@p asymptoticallystable if
it returnsto the steady-state(R; 1) from everyinitial processstate value:

De nition 2.5 (closed-loop asymptotic stability): Let a discrete-time time-invaiant
linea processmodel with steady-state(®; @), a carespnding open-locop optimal control
problemOCP,‘i’LSC(ko) (which is feasiblefor all wg 2 R"*) satisfyingthe de nitions (ZZZ19)
andamapJ asin (ZZI3 be given.

Then the processmodel closed-l@p controlledthrough J is called closed-l@p asymptoti-
cally stablei

kxy Rk, !' 0 as k! 1 ; (2.2.16)

no matter from which initial processstate wg 2 R"* the closed-lop control is started.

12



2.2. Linear Mo del Predictive Control

It is easyto shaw that a closed-l@p controlled processmodel is closed-l@p asymptotically
stableif and only if the narm of all eigenvalue®f the mappingA + BJ in Eq. (Z2Z140) is
smallerthan one. Undersomemild conditions(stabilisabilit)ﬁ and detectabilit)ﬂ), it canbe
shawvn that linea MPC is closed-l@p asymptoticallystableif an in nite prediction harizon
is used(cf. e.g.[2, p.773]). For linea MPC with a nite prediction harizon the following
result holds|[74]:

Theorem 2.1 (stabilit y of linear MPC): Let

. ploxe . 1,
uMﬁngmpl 5 . Xk QX + URRUK + 5Xi04n, PXko+ (2.2.17a)
St Xk = Wo(ko); (2.2.17b)
Xks1 = AXi+ Buk 8k Ko; (2.2.17¢c)
X Mx 8k  ko; (2.2.17d)
U Nu 8k ko; (2.2.17¢)

with X 2 R™, 02 R™ andX; U< , be adiscrete-timelinea open-loop optimal control
problemwith vectas and matricesde ned asin De nition [Z4 If, in addition, (A; B) is
stabilisable, Q%; A isdetectableandif P isthe (unique) solutionof the discretealgebraic
Riccati equation

P=0Q+APA APB R+BPB 'BPA: (2.2.18)
def

Then there existsa nite valuen, = n, 2 N suchthat the sequenceof optimal process

iINPUES U, ;@ 7 Ukg+ n, 1 aswell asthe optimal objectivefunction valueof (ZZ1J are also

optimalfor the choiceny, %t (without the summandncludingP). Thus, alsothe optimal

control problem (ZZIJ) with nite prediction harizon n, is closed-lep asymptotically
stable.

Proof: Canbe foundin [[74].

This resultshavsthat it is possibleto replacethe linea open-laop optimal control problem
overanin nite harizon (np = 1 ) by a nite one whithout losingoptimality and stability.

Sinceit only statesthe existenceof suchan n, 2 N the questionremainsopen: how
to chooseny in practice? The proof of Theaem [Z1 is basedon the observationthat

there always existsa time instant n,, as from which no input or state constraint would
be violated evenif they were omitted from the problemformulation (yielding the so-called
linea-quadratic regulate [53]). If suchan n, is chosenas length of the nite prediction
horizon optimality of the solutionis preserved.Therefae, it is suggestedn [64], wherea
similar strategy for the nonlinea caseis presented,to ensurethat n, \is “large’ compaed
to the systemdynamics". Of course,this is not a rigorous ansver but as a rule-of-thumb
it shouldsu ce to choosethe length of the prediction harizon a few times larger than the
time the processneedsto return into a steady-stateafter a strong pertubation.

SFor a de nition seeany textbook on control theory, e.g. [Z] or [90].
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2.2.3 Condensing into a Smaller Scale Parametric Quadratic Program

In this sectionwe will shav how the discretisedlinea open-loop optimal control problem
OCPdsc(ky), whichis a parametric quadratic program (cf. De nition ZT), can be trans-
formed into a smallerscaleone. For easeof notation, we consideronly the casewhen

the processis to be regulatedto the origin (i.e. yi L' 8k ko, Yref L Uref &l )

adaptationsto the generalsituation are straightforward.

UsingEqg. (ZZ109 all processstatesat time instantsgreaterthan ko canbe expessedvia

the inital processstate xi, and the input sequencely,;:::;Uks+n, 1
Xkot1 = AXgy+ Bugg; (2.2.19a)
Xkorz = A(AXg, + BUg,) + BUggss = AXy, + AB Uk, + BUgg+1 ; (2.2.19b)
. Xt
Xkgrj = Alxge+ A P Bugeis j2f0npg: (2.2.19¢)
i=0

In order to refamulate OCPﬁ,ifc(ko) we introducethe following augmentedquantities:

0 1 0 1
Xko Uko
Xko+1 Uko+1
L % ot E; u % % v E; (2.2.20a)
0 Xk0+ Np 1 uk0+np 1
Q 0 R !
Q R
Q U L : R def % . E; (2.2.20b)
0 ;
. R
0 1 0 1
Id
A B
A2 AB B
A def : ; g def : .. o : (2.2.20c)
ANp 1 ANe 2B AB B
ANp AMp 1B AM 2B AB B
0 1 1 1
M . ONn %
: N |
- % Mo E; N % % . E; | % E@;E; (2.2.20d)
; : N |

whereinx 2 RM* ) nx y 2 R M Q 2 RMe*) nx (Np+l) nx "R 2 RMp Nu Mp Nu
A 2 R(np+l) nx x B 2 R(Np+1) nx np i M 2 RN Ne (np+1) N, N 2 RM Nc Npnu
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2.2. Linear Mo del Predictive Control

| 2 R™ "¢, Then the discretelinea open-lcop optimal control problem OCPJ¢(ko) (for
regulatingthe processto the origin) canbe written asfollows:

min sx0x + uRu (2.2.21a)
st Xk, = Wo(ko); (2.2.21b)
X = AXy, + Bu; (2.2.21c)
I Mx+ Nu: (2.2.21d)

Substituting 221l and (ZZZT9 into the objective(ZZT3 andthe constraints(Z2.214)
yields

min U8 BB + R u+ u® BQA wo(ko) + FWo(Ko)’AQAW(ko) (2.2.22a)
S:t: I M Awg(kg) + MB + N u: (2.2.22b)

This leadsto

Theorem 2.2 (linear MPC and parametric QPs): The discrete-timdinea open-lcop op
timal control problem (ZZI0) (with Q 2 S™), P 2 S"y, R 2 S™) for a given constant
Wo 2 R"* is a parametric quadratic program of the form

min suHu+ uFwo (2.2.23a)
sit: Gu | Ewp; (2.2.23b)

whereH 2 R Mu MpNu 'F 2 RMp Mu Nx G 2 R Ne MNpNu E 2 R Nc Nx gndthe other
gquantitiesare de ned asin Eqgs. (ZZZ0. Moreover,the matrix H is positive de nite.

Proof. The rst statementfollows directly from the discussiorabove by setting the ma-
tricesH %' BOB+R,F def BWA, G ©MB+ N, E L MA andthe remak that the
last summandof Eq. (ZZ223 can be omitted sinceit is constantfor xed wg(ko). It is
easyto shov that a QP of the sameform is obtainedfor referenceracking problems.

It remainsto prove that H is positive de nite: Q 2 S™j and P 2 S™ imply that Q is
positive semi-de nite and thus alsoBQB. Furthermae, R 2 S™ impliesthat alsoR is
positivede nite. SinceH is a sumof a positive semi-de nite and a positivede nite matrix
it followsH 2 S"» ™.

Following [15], we call the transition from the large structured QP (ZZ2ZJ) to the smaller,
but lessstructured QP (ZZ2Z3 condensing As a generalisationof Theaem 23, it can
be shawvn that the solution of a (discretised)nonlinea MPC open-locop control problem
is equivalentto the solution of a nonlinea program (NLP). Usageof the direct multiple
shooting approach [15] leadsto specially structured NLPs which can e ciently be solved
via a sequentialquadratic programming(SQP) methad [[71], [85]. This classof methadsis
basedon the successivaolution of a sequenceof quadratic programs,insteadof a single
oneasin linea MPC (seealso Section.7.2).
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2.3 Quadratic Programming

In SectionZZ2we haveseenthat linea open-loop optimal control problemscanbe expessed
as (parametric) quadratic programs

De nition 2.6 (quadratic program): The optimisation problem
QP: min IXHx + xY (2.3.1a)
sit: Gx b; (2.3.1b)
with
the Hessianmatrix H 2 S" ' fM 2R "jM = M &,
the gradientvecta g2 R",
the constraintmatrix G 2 R™ ", and
the constraintvecta b2 R™,

is calleda quadratic program

Therein, the inequality constraints (ZZ310) can also contain equality constraints, upper
constraints' bounds as well as bounds on singlevariablesx;, 1 i n, by virtue of a
proper choiceof G and b.

We denotethe i-th row of the constraintmatrix G by the vecta G% the matrix composed
of the rows caresmpnding to constraintsin any (ordered) indexset A  f1;:::;mg is
denotedby Ga. The carespnding pat of the constraint vecta b (or any other vecta
v 2 R™M) is denotedby by (va).

De nition 2.7 (feasibility, boundednessand convexity of a QP): A quadraticprogram
asde ned in De nition [Z8 is called

feasiblei its feasibleset

def

F x2R"jGx b (2.3.2)

is nonempy and infeasibleotherwise;
bounded(from below) i there existsa number 2 R suchthat
1
éx% x+x%Y 8x2F (2.3.3)

and unboundedotherwise;

convexi its Hessianmatrix H is positive semi-de nite, i.e.
H2S":; S % M2s"jvWMv 08v2R" (2.3.4)
and nonconvexotherwise;
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2.3. Quadratic Programming

strictly convexi its Hessianmatrix H is positive de nite, i.e.

H2S%; S%%E M2s"jvWMv>08v2R"nf g : (2.3.5)

Accading to Theaem[ZZ, all QPs arising within the linea MPC context havea positive
de nite Hessianmatrix. Thus we make the standingassumptionthat from now on all QPs
are strictly convex unlessstated otherwise. This also impliesthat all QPs are bounded
from belowv becauseof the following

Lemma 2.1 (boundednessof strictly convex QPs): Everystrictly convexquadraticpro-
gram of the form (Z30) is boundedfrom below.

Proof: If weomit the constraintsit is obviousfrom standad calculusthat the unconstrained
QP (F = R") hasexactlyoneglobalminimiserat x U 1g. Sincethe optimal objective
function valuecannot decreasevhenthe feasiblesetis madesmaller,i.,e. F R", we can

def I : .
choose = %X(H x + x% asa lower bound on all objectivefunction valuesof the original

QP.

This also shavs that a strictly convexquadratic program always has a solution if it is
feasible:

Theorem 2.3 (Frank-Wolfe Theorem): If a quadraticprogram (230) is boundedfrom
belov on a nonempy feasibleset F (as de ned in (Z33), then the objective function
attainsits in mum on F, i.e.

1 1
9xPt 2 F : Exo‘“oH xOPt 4+ xOPtGy Ex(Hx +x% 8x2 F: (2.3.6)

Proof: If F is compactthis is true for any continuousobjectivefunction. A proof for the
generalcasecan be found in the appendixof [35].

Duality is animportant conceptin linea programmingthat canalsobe extendedto convex
guadratic programming[Z2/] (and alsoto generalnonlinea programming[89): the main
ideais to formulatea secondthe dual, problemwhichcanbe shavn (undermild conditions)
to havethe sameoptimal objectivefunction valueasthe original, the primal, one. Moreover,
the dual objectivefunction valueat any dual feasiblepoint providesa lower bound on the

optimal primal objectivefunction value. Thesethearetical propertiesare very helpfulwhen
proving optimality of a certain point and also lead to interesting practical methads for

solvingquadratic programs,as will be demonstratedn Chapter3

De nition 2.8 (dual quadratic program): We de ne the dual quadratic program of the
QP (Z3J) to be the problem

Qpdual ormax IxHx + yD (2.3.73)
st:  Hx+g=GY; (2.3.7b)
y ; (2.3.7¢)
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Chapter 2. Theoretical Background and Motivation

whereall quantitiesare de nied asin De nition 228
The notions of feasibility, boundednessnd convexiy (cf. De nition [Z4) alsoapplyto the
dual QP; its feasiblesetis de ned as

F dual def (x;y)2R"jHx+g=GY%; y , (2.3.8)
accadingly.

Sincean extensivdareatment of duality is beyond the scoge of this thesis,we only summaise
the main result:

Theorem 2.4 (solution of primal and dual QP): Let a strictly convexprimal and the
carespnding dual quadratic program (as de ned in De nitions Z8 and [Z8) be given.
Then the following holds:

(i) If x°P! is a solutionto QP (3] then a solution x°Pt; yoPt to QP exists.
(ii) If asolution x©Pt:yoPt to QPYUa existsthen x°P! is a solutionto QP (Z3).
(iii) In either case
1 1
EXO'O“H XOPt 4+ xOPtyy = Exo"tOH XOPL + yOPtGy (2.3.9)

holds.

Proof: Canbe foundin [Z4], wherea very simila resultfor convexQPswas rst published
(note that our variant of the secondproposition requiresthe invertibility of H).

Corollary 2.1 (bounds on the optimal objective function values): Letafeasible strict-
ly convexprimal quadratic programwith optimal solutionx°Pt and the caresponding dual
be given(seeDe nitions [Z8 andZ8). Then the objectivefunction valueof the dual at an

arbitrary feasiblepoint providesa lower bound on the optimal objectivefunction value of

the primal, i.e.

1 1
EXoptOHXopt + XOptOg EX(HX + yoo 8 (x;y) 2 F dual . (2.3.10)

Proof: Sincethe primal QP is feasibleand boundedfrom belaw (cf. LemmalZ]) a solution
must existsaccading to TheaemZ3 Thus Theaem Z4 guaanteesthe existenceof an
optimal dual solution x°Pt; yoPt implying

%x‘)p“H xOPt 4+ xOPtGy = :—ZLXOP“)H xOPt 4+ yOPtG, :—ZLX(]—IX + yb: (2.3.11)
for all feasiblepairs (x; y).

Corollary 2.2 (feasibility of primal QP): A strictly convexquadratic programis feasible
if and only if its dual is bounded(from above).

18



2.3. Quadratic Programming

Proof: If astrictly convexQP isfeasibleTheaemZ4(i) ensureshe existenceof an optimal
solution of its dual. Thus, its dual is boundedfrom above.

If a strictly convexQP is infeasibleTheaem[Z4(ii) impliesthat its dual cannotpossesan
optimal solution. Sinceits dual is feasible, H g; is always a feasiblepoint, it must
be unbounded(from above).

In order to formulate explicit optimality conditions for quadratic programswe needthe
following de nitions:

De nition 2.9 (active and inactive constraints): Let a feasiblequadratic program of
the form 232D be given. A constraintG% h,1 i m,iscalledactiveatx 2 F i

GX = b (2.3.12)

holdsand inactive otherwise.The (disjoint) index sets

Ax) E i2f1:mgjek=h ;

Ix) ® i2fL:mg G > b

o

are called set of active constraints or more common active set at x and set of inactive
constraintsat x, respectively If x°P! is an optimal solution of the quadratic program the
careponding active set A(x°P!) is called optimal active set

De nition 2.10 (working set): Let a feasiblequadratic program of the form (230 be
given. Then arbitrary index sets

A fl,:::;mg;

are called working set and working setworking set complement resgectively Their cardi-
nalities are denotedwith

A

inj:

Now we can state the following optimality conditions which are special variants of the
generalnonlinea case(cf. [&4], [54):

Theorem 2.5 (Karush-Kuhn-T ucker conditions): Let QP (Z3J) be a strictly convex
and feasiblequadratic program. Then there existsa uniquex°P* 2 R" and at least one
working setA  A(x°P!) and a vecta y°P' 2 R™ which satisfythe following conditions:

Hx Gy =  g; (2.3.13a)
Gax®' = (2.3.13b)

G x ! b ; (2.3.13¢)

yoPt o= (2.3.13d)

yo : (2.3.13e)
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Chapter 2. Theoretical Background and Motivation

Furthermae,
(i) x°P! isthe uniqueglobal minimiserof the primal QP (IZ37),

(ii) (x°Pt;yoPt) is an optimal solution of the dual QP (Z33).

Proof: A proof canbe found in any textbook on optimisation, e.g.in [17, p.244].

Note that neitherthe set A nor the dual solution y°Pt are necessaly unique. If all rows
of the matrix G, are linealy independentand A is xed, however,y°P' would be uniquely

determinedfrom Eqgs. (Z23.133 and (Z.313h):

Lemma 2.2 (invertibilit y of the KKT matrix): Let the Hessianmatrix H be positive
de nite. Then the so-calledKKT matrix

H G2

2.3.14
G, (2.3.14)

is invertibleif and only if Ga hasfull row rank.

Proof: It is obviousthat the KKT matrix is singula if Ga doesnot havefull row rank. A
straigtforward proof of the other direction can be found in [65, p.445].

If A = A(x°P), the condition that G has full row rank is called linea independence
constraintquali cation (LICQ). Unfartunately, we cannot make this assumptionin general
within our algaithm, aswe will seein Chapterfdl

2.3.1 Parametric Quadratic Programming

Quadratic programsarising in model predictive control only depend on the current process
state wg. Its (initial) value a ects the gradient and the constraint vecta but does not
changethe Hessianand the constraint matrix, as shavn in Theaem [ZZ2 This is exactly
the situation whereparametric quadratic programmingcan be applied: a (possiblyin nite)
sequencef QPswith constantmatricesbut varying vectas.

De nition 2.11 (parametric quadratic program): The optimisation problem

QP(wo) :  min  3xHx + x%(wo) (2.3.15a)
sit: Gx b(wp); (2.3.15b)

withH2R" " G2R™ " wy2 R™ and

g(wo) E' h+ Fwp; (2.3.16a)
bwo) E' 1+ Ewp; (2.3.16b)

(with F 2 R™ "' E 2 R™ ™ h 2 R", | 2 R™) is called a paametric quadratic
program
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2.3. Quadratic Programming

For an arbitrary but xed wgp we yield an ordinary quadratic program of the form (Z37)
and therefae all de nitions and results presentedso far also carry over to a parametric
quadratic program. But sincethe gradientvecta g(wgp) and the constraint vecta b(wg)
are both ane functionsof the current processstate wg, the feasibleset (De nition [Z4),
its optimal solution (Thearem[Z8), the set of active and inactive constraintsat a certain
point (De nition 29 aswell as its dual (De nition Z8) also depend on wg. Therefae
these quantities are written as F (wg), X°P'(wg), A Wwg; X°Pt(wg) , | wg; x°P'(wp) , and
QP (wy), respectively|but, for notational conveniencewe will sometimesdrop this
dependencewhenit is clea from the context.

Variations of the constraintvecta may leadto infeasibleQPsfor certain valuesof wg and
thus we introducethe following

De nition 2.12 (set of feasible parameters): The set

P % w2 R™|F (wp)6 : (2.3.17)

is called set of feasibleparametersof a parametric quadratic program.

It hassomespecial propertieswhich are crucial for the online active set strategy presented
in this thesis:

Theorem 2.6 (convexity and closednessof the set of feasible parameters): The set
of feasibleparametersof a parametric quadratic program QP(wg) as de ned in De ni-
tion Z12is conve and closed

Proof: In order to prove convexiy of P, we haveto shav: if two arbitrary but xed
quadratic programs QP Wél) and QP Wéz) are feasible,i.e. wél); wéz) 2 P, alsoevery
quadratic program QP wél) + (1 )wéz)
wih+ @ w2 p.

If QP w” andQP w? are feasiblethere existx®; x@ 2 R suchthat

, 2 [0;1] R, is feasible,which means

ox®  pwl? and Gx®@ bw?

hold. By multiplying theseinequalitiesby 2 [0;1] and (1 ), respectively and adding
the resultstogether

x®+ @1 H)ex@®  bwd +@ Hbwd
is obtained(sinceboth and(1 ) are nonnegative).Substituting Eq. (223168 yields

G xMW+@a x@ I+@ ) +E wi+@a w?

=b w’+@ wd

whichshavs x®+(@1 x@ 2 F wl+@ WP andhence w’+@1 WP 2 P.

6SeeDe nition B
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Chapter 2. Theoretical Background and Motivation

Second,we shav (similar to [[I(]) that P is closed,i.e. its complementR"* n P is open:
Caollary Z2 shavs that wy 2 R™ nP is equivalentto the unboundednessf QP (wy).
Moreover,

QPa (wo) unbounded () 9y2R™: vy A yhwg) > 0 (2.3.18)

obviouslyholds. For xed y , the valuey3h(wp) dependscontinuouslyon wg as b(wo)
dependsa nely on wg. Thus, there existsa neighlourhood N (wg) of wp suchthat

yb(Wo) > 0 8w 2 N (wp): (2.3.19)
Sincewg was arbitrary, this provesthat R"* nP is open and therefae P is closed.

The set of feasibleparametersP is not only convexand closedbut it alsocanbe subdivided
into a special collectionof polyhedrﬂ, the so-calledcritical regions[8g]:

De nition 2.13 (critical region): Let a strictly convex parametric quadratic program
QP(wp) with the set of feasibleparametersP be given. Moreover,let x °Pt (wg), wg 2 P,
denoteits unique optimal (primal) solutionand A wg; x°P'(wp) the caresponding active
set (seeDe nition Z9). Then, for everyindexsetA f1;:::;mg, the set

CRA %" Wo2PjA=A wyx%(wp) (2.3.20)

is calleda critical regionof P.

Theorem 2.7 (partition of the set of feasible parameters). For a strictly convexpara-
metric quadratic program QP (wg) the following hold:

(i) All closuresof critical regionscl (CRp,) are cIosedponhedrE with pairwisedisjoint
interiors.

(i) The set of feasibleparametersP can be subdividedinto a nite number of closures
of critical regions:

P = cl(CRa); A fl1,:::;mg: (2.3.21)
i=1

Proof. We only prove this thearem for the situation in which the linea independence
constraintquali cation (LICQ) is satis ed for all wg 2 P; an extensionto the generalcase
can be found in [6Q)].

(): Sincethis rst part istrivial for empty critical regionswe assumewithout lossof gener-
ality that CRa 6 ; for anarbitrary A f1;:::;mg. This meansthat thereexistsawg 2 P
for which A = A wp; x°P'(wp) is the active set carespondingto an optimal solution x Pt
of QP(wp) satisfyingthe optimality conditionsof Theaem[ZZ3. By substituting

X (wo) = H GRyS™ (wo) H lg(wo) (2.3.22)

"SeeDe nition &3
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2.3. Quadratic Programming

they can be written as

GaH lG%Y?\pt(W) = ba(wo) + GaH 'g(wo); (2.3.23a)
GiH Gy (wo) > h(wo)+ GaH g(wo); (2.3.23h)
yP(wo) = (2.3.23¢)
ya™ (wo) : (2.3.23d)

Note that the third KKT condition (2237139 is strictly satis ed asA = A wp; x°P'(wp) .
This leadsto

yPwo) = GaH 1G% ' ba(wo)+ GaH lg(wo) ; (2.3.24a)
GiH Gy (wo) > bi(wo)+ GaH g(wo); (2.3.24b)
yPwo) = (2.3.24¢)
ya (o) : (2.3.24d)

inwhichGaH 1G isinvertiblebecauseof the LICQ. Finally, by substituting Eqgs. (Z-3.163
and (22316l we obtain that A is the active set of an optimal solution as long as the
following linea inequalitieshold:

GiH G2 GaH G2 ' Ea+ GaH !FO (2.3.253)
E + GaH F% wo> GH G2 GaH G2 ‘la+1i:

1 1

GaH 68 "~ Ea+ GaH Fwy  GaH GY “la: (2.3.25b)

Thus, we derivedan explicit reresentationof a (nonempy) critical regionCR . Its closure
with respect to the standad topology of R"« is obtained by replacing\>" with \ " in
Egs. (2325 andis thus a closedpolyhedron.

By construction, the strictly convexquadratic program QP(wg) is feasiblefor everywg 2
P which guaanteesthe existenceof an unique optimal solution x°Pt(wg), accading to
Theaem[ZF, anda carespndinguniqueoptimal active set. Therefae, the critical regions
are pairwisedisjoint and hencetheir closurescan only overlapat their boundaies.

(ii): Sincean optimal active set existsfor everywg 2 P, the set of feasibleparametersP
equalsthe union of all critical regions. P also equalsthe union of all closuresof critical
regionsasit is closed(i.e. P = cl(P), cf. Theaem[Z8). The number of closuresof critical
regionsis nite becausehe number of indexsetsA is 2™.

We will seein ChapterH that these facts|namely the convexiy of the set of feasible
parametersaswell asits partition into closed,convex,polyhedralcritical regions|a re very
important ingredientsfor the proposed online active set strategy; they are depictedin
FigureZ31

The proof of Theaem[Z4 alsogivesus someinsightinto the structure of the optimal solu-
tion x°Pt(wp) of the parametric quadraticprogram QP(wg). We summaise this important
resultin the following
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CRa,

CRa,
CRa,
CRa,
CRa,

CRAG CRA7

Figure2.2: Partition of the set of feasibleparametersP into critical regions.

Theorem 2.8 (piecewise ane optimal solution): Let a strictly convex parametric
quadraticprogramQP(wg) andits setof feasibleparametersP be given. Thenthe following
is true:

() Its optimal solutionis a piecewisea ne and continuousfunction

xPt:p 1 R":

(ii) its optimal objectivefunction valueis a piecewisequadraticand continuousfunction

ot: p I R

Wo 712X (o) H X (w) + x°P! (wo) (o)

The notion \piecewise" meansthat there existsa nite partition of P into polyhedral
critical regionssuchthat the restrictionsof x°P* and ©°P! to eachcritical regionare a ne
or quadratic, respectively

Proof: Again,we only provetheseresultsfor the situationin whichthe linea independence
constraintquali cation (LICQ) is satis ed for all wg 2 P and referto [6(0] for an extension
to the generalcase.

CombiningEgs. (2322 and (Z3:243 yieldsan explicit a ne representationof x °Pt(wp)
overeachclosureof a critical region. Thus, x°P! is piecewisea ne overP and continuous
overeachclosureof a critical region. The bounday betweentwo closuresof critical regions
belongsto both closedregionsand as the optimum is unique, the solution must also be
continuousacrosstheseboundaies (seealso [[g]).

The secondpart of the thearem follows trivially from the rst.
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2.3. Quadratic Programming

Continuity of the optimal solution function x°P* was alreadystated by Fiacco[37] in the
context of sensitiviy analysisin nonlinea programming;Za riou [97] provedthat x°P' is
piecewisea ne in order to obtain stability results. Our formulation which explicitly uses
a polyhedralpartition of P was introducedby Bemporad et al. [8] (and re ned by Mayne
et Ralovic [60Q]) in order to derivea practical methad for the o ine solution of parametric
quadratic programsarising from MPC problems.

2.3.2 Explicit (Oine) Solution of Parametric Quadratic Programs

The third step of Algarithm [Z7 requiresthe solution of an open-loop optimal control

problemat eachsamplinginstant duringthe runtime of the controlledprocess.Althoughthis

task reduceso a simpleoptimisationproblemif the processmodel (and the constraints)is

linea andthe objectivefunction is quadratic,namelya (strictly) convexquadraticprogram,
it may becomecomputationallyprohibitive if veryshat samplingtimesare necessa. Thus,

insteadof solvingeachquadraticprogramduringthe runtime of the procesausinga standad

QP solver(seeChapterd), [8] proposedto solveall possiblyoccuring QPs befaehand,i.e.

solvingthe parametric quadratic program QP(wp), and look up the solutionwhenneeded.
TheaemZ8 guaanteesthat only a nite number of critical regionsand the carreponding
explicit a ne representationof the solution have to be stored, making this explicit, or

\oine", appoachtractable. Sinceavailable(online) computingpower is verylimited (and

memay quite cheap)in most practical applications,explicit model predictive control scon

becamevery popula amongthe engineersof the MPC communit. We outline the main
conceptin Algorithm 22

Skippingtechnicaldetails,we brie y explainthe o ine step(0) and the onlinestep (3) of
the explicit linea MPC appoach:

The parametric quadratic programmQP(wg), alsoreferredto as\ multi-parametric’ quad-
ratic program to emphasisethat wg is usually nonscalg, is solvedas follows [8]: rst,

an arbitrary parameterwg in the interior of a critical regionis determinedby solvingan
appropriate linea program (LP). Then the quadratic program QP(Wg) is solvedwhich
enablesthe determinationof a polyhedralrepresentationfw 2 P j Aw g of the critical
regionCR, with Wwo 2 CR, aswell asan ane representationCw + ¢ of the optimal

solution over CR,. Afterwards, the complementP n CR, can easily be divided into a

partition of ry det dim B convexpolyhedraP1;::: ; P by successivehangeof the de ning

inequaliiesAiw B into Aiw > . Finally these stepsare recursivelyperfamed for

linea dependencehandlingare decriked in [[74], [[75].

Step(3) canbeimplementedstraightfarward by just checkingall polyhedralrepresentations,
i.e. checkingif Awg B, until the carect critical regionis found and then calculatingthe
optimal solutionvia Cwg + & Sincethe number of critical regionsmay becomevery large,
[78] proprosedthe constructionof a binary seach tree (however,this ideadoesnot reduce
the o ine complexity).

Although the explicit approach soundsquite appealing,it hasa main drawback: sincethe
number of possiblecritical regionsgrows exponentiallyin the number of constraints(up to
2™ di erent activesets)it is limited to low dimensionalparameterspacesP, i.e. to process
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models comgising only very few stated. Otherwisethe o ine computation and storage
requirementsaswell asthe onlinee ort for nding the carect critical regionsoon become
prohibitively large. A further seriousproblem in practice is that online tuning becomes
nealy impossibleasthe o ine computationtime blows up.

Therefae, severakechniquedor reducingthe o ine complexiy at the expenseof a subop-
timal online perfamanceand slight constraint violationswere presentedin [[], [51], [74].
The main ideais to combineseveral\small" critical regionsto a \bigger" one. A di er-
ent procedurecalledpartial enumerationis proposedin [68]: although exponentially many
critical regionsexist only a very smallfraction of them really becomesrelevantduring the
runtime of the process. Thus, insteadof calculatingall critical regions,only (a guessof)
this fraction is calculatedand stored in a cache. If the critical region of the current QP
belongsto the cacheits a ne repesentationof the optimal solution is used. Otherwise,
while applying somesuboptimal heuristicalcontrol action, the QP is solvedonline usinga
standad QP solverand the caresppndingcritical regionis addedto the cache,afterwards.

Algorithm 2.2 (explicit linear model predictive control concept)

input: discrete-timelinea open-lcop optimal control problem OCPﬁr‘]SC(ko),
sequenceof samplinginstantsto; t1; 1 the e
output:  piecewisede ned optimal processinputs u°Pt : [0;teng] ! RM

(0) Computeand store an explicit piecewisea ne regresentationof the solution x °P! to
the parametric quadratic program QP (wp) (befae start of process!).

(1) Seti 0.
(2) Obtain current processstate wo(t;).

(3) (a) Determinea critical regionCRa, suchthat wp(ti) 2 CRa, .

(b) Obtain rst optimal processinput ug, = (x57';:::; xpP

representationof x°P' overthe critical regionCRa, .

)%from the explicita ne

(4) Setu®Pt(t) dzefuko 8t 2 [tj;tj+1] and apply uy, to the processuntil tj.1 .

() if 1= nsampe L
stop!
else

Seti i+ 1 and continuewith step (2).

8State spacedimensionsof about ve seemto be currently tractable via explicit MPC.
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Chapter 3

Existing Metho ds for Solving
Quadratic Programs

Having introducedthe explicit, or o ine appoachfor treatment of parametric quadratic
programs, this chapter is devotedto a shat summay of existing solution methods for
quadratic programs. All methads to be presentedare able to solve quadratic programs
arising in the online context of model predictive control but (almost) none of them was
written with this applicationin mind. We descrite them for two reasons: rst, our online
active set strategyis basedon the so-callednull spacebasedprimal active set methad and
alsoinherits somefeaturesof the dual active setapproach Second,we will usean active-
set method as compaison in severalMPC benchmak tests in ChaptersH and@, as such
methads are widely usedin practice. Also interior-point methads are brie y mentionedfor
completeness.

3.1 Primal Active Set Metho ds

Let us considerthe task of solvinga strictly convexquadratic program, asde ned in De -
nition Z8 If the inequaliy constraintswhich are active at the solution, say A def A(xOP),
are known befaehandthis problemreducego the following equality constrainedquadratic

program:

QP : min  2xHx + x% (3.1.1a)
X2RN
sit: Gax = ba: (3.1.1b)

Without lossof generaliy, we assumehat the matrix G5 hasfull row rank becausetherwise
a suitablelinealy independentsubsetof active constraintscould be chosen.If QP is also
feasibleTheaemZH impliesthe following necessy and su cient conditionfor the optimal

solution:

H &% XOPt g
= : 3.1.2

Thus, solvingQP,. becomesequivalentto the solution of a linea systemwhosematrix is
invertible, accading to LemmalZ2 Sincethis is an rather trivial task active set methods
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aim at reducinga QP (Z3) to a QP (BI1) by identifying (a suitable subsetof) the
optimal activeset. An ealy active setalgaithm for (general)quadraticprogramswasgiven
in [33. The basicideais indeedmuch older sincealso the famoussimplexmethad [22]
for linea programming can be interpreted as specialisedactive set method (seee.g. [41]);
andthe rst implementationdfor the solutionof quadratic programswere extensionof the
simplexmethad [89], [22].

Primal active set methods start with a feasiblepoint x© (if sucha point exists)and a
working set A@  A(x@) which servesas an initial guessfor the optimal active set.
Then a sequenceof feasibleiteratesx®) and careponding working setsA®, k 0, are
determined:assumingthat A® is indeedan optimal working set, the next iterate

is the optimal solutionif and only if it solvesEq. (B12):
|

H GO x(k+1)
G Al ke) = J (3.1.4)
Ak) Yam | A (k)
H GO x® Hx® +
O g, A e = o (3.15)
A AG)

The reasonwhy system(ET) is solved,insteadof (Z13), is that AX is only a guessfor
the optimal active set. Thus, whenmovingfrom x® to x**1) along x® it may happen
that an inactive constraint becomesviolated which rendersx «*1) infeasible. In order to
avoid this (primal) infeasibiliy, the next iterate x®*1) is chosenas

xkr1) ey L 0 3@, Ko R 0 (3.1.6a)
with ( ( ))
ef

Oy (k)
® = min 1; min b Gx® G xW<o (3.1.6b)
izat)  G? x(®

o

This choiceof & ensureghat
G|(k)X(k+l) = G|(k)X(k) + (k)G|(I((k)) X(k) b|(k) ; |(k) d:ef f1,:::; mg nA(k) (3.1.7)

holds, while G 5o x&*1) = b, is guaanteedby the choiceof x® (cf. Eq. (3I3).
If Eq. (BZLED) leadsto ® < 1 the constraint which causedthis limitation of ®|the
so-calledblocking constraintis addedto the working set, yieldingthe next working set
AK*) andthe next iterate is determinedin the above mentionedmanner.

If thereis no blocking constraint,i.e. &) = 1, afull stepis takenimplyingthat the optimal
solution of the quadratic program (ZZ32)) is found providedthat A®) is really the optimal
activeset. We cancheckthis by looking at the dual solutionvecta yﬂ‘(:)l): if the uniqueop-
timal solutionx® of QP subjectto the equality constraintsG 5o x® = by is foundthe
next step direction x&*1) must be zero. Therefae Eq. (B9 shows that the rst op-
timality condition (23133 of Theaem [Z3 is satis ed. Moreover, conditions (23135
and (Z3I3@ are fullled by construction; condition (Z313d can be met by setting
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y|(l<(kJ>r1) e Thus, accading to the last optimaltiy condition (2313, the currentiterate

xk*1) = x® is indeedoptimal for the inequaliy constraint quadratic program (2232 if

and only if each component of y/(A"(:)l) is nonnegative. If this is the casewe have found

the optimal solution of (Z237), otherwisewe drop onethe constraintscaresmpndingto a
. (k+1) . . .

negativecomponent of Yato from the current working set and proceedwith determinga

newstepdirection x®*1), agaifi.

A formal summay of the primal active set methad is givenin Algarithm B (cf. [65)):

Algorithm 3.1 (primal active set method)

input: strictly convexquadratic program QP of the form (Z:37),
initial guessesor solutionx(©@ and optimal active set A@ (both optional)

output:  optimal solutionx®Pt of QP and working set A asde ned in Theaem[Z3
(or messagéehat QP is infeasible)

(1) Setk 0 and obtain feasiblestarting point x© andworking setA@  A(x©).

If sucha point doesnot exists:stop (QP infeasible)!
(2) Calculate x® and y/&k(:)l) from Eq. 3L3.

(@) if  x®=

o (k+1
if y(A(:))

Optimal solution of QP found: setx°®  x® andA  A®. stop!
else

Drop a constraintj 2 A® with yj(k+1) < 0 from working set,

i.e. Ak*D)  AM) nfjg, and continuewith step (2).

(4) Computesteplength ® via Eq. BZLEH andsetx®+1)  x® + Ky

) if ®<1:
: o b G%M
Add a blocking constraintj = a:g;r(y)n GO x@

to working set,

e Ak AWM fjg.
else
SetAk+l) Ak,

(6) Setk k+ 1 andcontinuewith step (2).

LIt can be shavn, seee.qg. [65, p. 459{461], that the dropped constraint remainssatis ed along the new
step direction x®&*1),
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Somestepsof Algarithm B needfurther attention:

Initialisation: If no feasiblestarting point is givenby the userthe algaithm hasto nd one
in the rst step,alsoknowvn asPhasel (seee.g.[34]). The ideais to formulate an auxiliary
(linear) problemfor which a feasiblepoint is knovn and whosesolution deliversa feasible
starting point for the original problem. For our QP formulation sucha phasel, or feasibility,

problem can be the following

szmi;Qan % (3.1.8a)
Sit: G*x+p b* ; (3.1.8b)

G x b; (3.1.8¢)

p ; (3.1.8d)

where (B81.80) descrites a relaxationof the mp, 0 mp m, constraintswith positive
components of the constraint vecta, i.e. b® > , and (BZL80 descrikessthe (m  mp)
constraintswith nonpositive components of the constraint vecta, i.e. b . Then the
choice

x@ 60 Ly (3.1.9)

is obviouslya feasiblepoint for the auxiliay problem (BZ18). Furthermae, the original

problem(Z37) is feasibleif and only if the auxiliary problemhasan optimal objectivevalue
of 0. If that is the caseall componentsof p must be zero and the remainingoptimisation
variablesx form a feasiblestarting point for the quadratic program (Z3). The initial

working set can be chosenas a (lineally independent) subsetof the active constraintsat

the starting point.

Accading to [45], \computational experienceindicatesthat, unlessa feasiblepoint is avail-

able, on the averagebetween one-third to one-halfof the total e ort requiredto solvea

QP is expendedin phasel." If, asin model predictive control, a sequencef neighlouring

QPsis to be solvedoptimal solution and carespnding working set of the last QP can be

usedto initialise a primal active set solver. This warm start idea not only can savethe

phasel but also may reducethe number of iterations signi cantly. But due to changes
of the constraintvecta the former solution may becomeinfeasiblewhich makes a phasel

neccessy and thus ruinsthe possiblebene t of warm starts.

Droppinga constraint: If severalactive constraintscarespnd to a negativecomponent of
the dual solutionvecta in step (3) the questionarises: which one shouldbe removedfrom
the working set? A commonchoiceis to selectthe constraint

j = argmin yi(k): (3.1.10)
i2AK)
It \w orks quite well" [34] in practice\but hasthe disadvantagehat it is susceptibleo the
scalingof the constraints."[65]

Linea independenceof active constraints: The thearetical derivation of the primal active
set algaithm is basedon the assumptionthat matrix G« has full row rank at each
iterationk 0. Providedthat a linealy independentintial working setA© is chosen this
assumptioncan only be violatedwhena constraintis addedto working setin step (5), as
the deletionof a row cannotleadto rank de ciency Sincethe stepdirectionis chosensuch
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that all active constraintsremainsatis ed for all steplengthsno constraintwhichis linealy

dependentfrom them can becomea blocking constraint, and thus cannot be addedto the

working set.

However, there may be points at which the active set is linealy dependent, so-called
degeneratedpoints. At such points successiveleletion and addition of constraintswith

zerostep sizein betweencan happen (eachleavingthe working setlinealy independent).
And it may be that the sequencef working setsobtainedbe deletingandaddingconstraints
at sucha degeneratepoint repeats itself after nitely many steps,a phenomenorknown

ascycling. \Fortunately, the occurenceof cyclingis rare" and\simple heuristic strategies
almost always succeedn breakingthe deadlak” [42]. In contrast, [65] statesthat \most

QP implementationssimply ignare the possibiliyy of cycling.”

Finally, we want to mentionthat Algarithm Blterminatesafter a nite number of iterations
at the optimal solution of a strictly convexand feasiblequadratic program (Z31) provided
that no cyclingoccurs(cf. [65, p.466{467]).

In the next two subsectionsve will have a closerlook at how to solve system (B1.9)
e ciently .
3.1.1 Null Space Method

Solvingsystem(3. 1.9 canbe interpreted assolvingan equality constrained strictly convex
quadratic program simila to QP (see[3d]):

min I x0OH x4+ xOqHx® + g) (3.1.11a)
x(2Rn
st Gy x0 = (3.1.11b)

The equalily constraintimpliesthat a point is feasibleif and only if it lies completelyin
the null spac@ of the active constraintsmatrix Gaw - So,if Z® 2 RM (0 M) s a matrix
whosecolumnsform a basisof the null spaceof G, , i.e. GawZ® = , everyfeasible
point can be written as

xW = z® x§. xW o R N (3.1.12)
A null spacebasismatrix Z® can be obtainedby calculatinga QR factorisatior of Gou:

v 70 VY e g U9

0w (3.1.13)

whereV® 2 R" " is an orthonarmal and U® 2 R" "a an upper triangular matrix;
Y® 2 R " andz® 2 R" (" M) gre orthonormal matrices containing basesof the
rangeand the null spaceof G, , resgectively
Substituting Eq. (82112 into (B.I.IJ) leadsto the following unconstrainedquadraticprob-
lem:
, K K K
min 1 X(Z)OZ(")(HZ(") x(z)+ x(Z)OZ(")0 Hx® + g (3.1.14)

x (K)

2SeeDe nition BEA
3SeeTheorem B2
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whosesolutionis

1
Xg() - 7 K0y 7 (k) z®0 Hx® + g (3.1.15a)

ThereinR®WRK isthe Choleskydecomsitior of the projectedHessiarmatrix Z K H z ()
with an upper triangula matrix R®) 2 R(™ na) (0 na) |ts existences guaanteedby the
positive de nitenessof H and the fact that the basismatrix Z® has full column rank.
SinceR® is an upper triangular matrix, Eq. (B-LI5h) is easilysolvedvia a forward and a
backward substitution

Then the ass@iated dual solution vecta can be obtainedas

H x® cfuyle’ = Hx®+g (3.1.16a)
() yﬂ((;l) = Gaw Ggm lGA(k) Hz® X(Zk) + Hx® + g ; (3.1.16b)
) U(k)y/(i:)l) = YO HZO xP+Hx® + g (3.1.16¢)

whereG Gg(k) is invertible becauseG 5« hasfull row rank. Eq. (82115 canbe solved
via a backvard substitutionas U® is an upper triangular matrix.

The null spacemethad usesEgs. (B1.I56) and (BZLI69 to calculatethe solution of the
KKT system(ZL5); the matrix factorisationsare introducedin order to calculatea null
spacebasismatrix, which greatly simpli es the calculationof yﬂ‘(:)l), andto avoidexplicitly
inverting the projected Hessianmatrix. Inverting the projected Hessianmatrix as well as
calculatingthe matrix factorisationsfrom scratchrequiresO(n3) oating-p oint operations.
So, the factorisations seemto be of limited use as they changewhenevera constraint
is addedto or deletedfrom the working set. But becauseof the simple nature of these
changesupdate schemedor Choleskyand QR decompsition were descrited in [13€], [44],
[27] which reducethe e ort to obtain the changedfactorisationsto O(n?). Thus, alsothe
number of oating-p oint operationsfor solvingthe KKT systemonly growvs quadraticallyin
the number of optimisation variables. We will discussthesematrix updatesin mare detalil
in Section33 as our online active set strategy is basedon the null spaceapproachand
alsomakesuseof them.

Two well-knavn implementationsof the null spacemethad for quadratic programmingare
gpsol [62] and gpopt [63. We alsonote that the null spacemethad is applicableaslong
as the projected Hessianis positive de nite, which not necessaly requiresthe Hessian
matrix to be positive de nite; an extensionto inde nite quadratic programsis descriked
in [40]. Furthermae, since Z® is chosenorthonamal, the condition numbell of the
projected Hessianis the sameas that of the Hessianitself. This makes the null space
method numericallymore stablethan the rangespacemethod, which we presentnext.

4SeeTheorem &1
5SeeDe nition &1l
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3.1.2 Range Space Method

Assumingthe Hessianmatrix H to be positive de nite, the KKT system([3ZI.3) canalso
be solvedby calculatingthe inverseof the KKT matrix explicitly:

H G% H* H }GQ,WHMGwH * H G, ,wk

= Id; (3.1.17
G WOG,H L W (3.1.17)

1
wherew ®) % GawH GO 2 R"A "a_ Exploiting commonsubexgessiondeads
to the following solutionformulaefor system(31.5):

y'(olf(:)l) _ W(k)GA(k)H L Hx® 4+ g (3.1.18a)
x® =H 1Gg<k>y/(f<:>l) H * Hx®+g (3.1.18D)
= H GuW®GwH * H ' Hx®+g : (3.1.18c)

This representationof the solution is called range spaceappoach becausethe Hessian
matrix is projectedto the rangespaceof the active constraints. This form hasthe disad-
vantagethat the conditionnumberof G, H 1G9, isthat of the Hessiammultiplied with
the squaed condition number of G ,,, which rendersthe rangespacemethod inappropri-

*) 1

ate if the active constraintsmatrix f\s ill-conditioned;the sameholdsif the Hessianmatrix
H is nealy singula.

On the other hand, this approachbecomesattractive if the Hessiarmatrix is easyto invert
and the number of constraintsin the working set remainssmall. This is in contrastto the
null spaceapproach wherethe dimensionof the projected HessianZ ® ™ z®) | and thus
the number of carepondinglinea algelya operations,decreasesvith the number of active
constraints.

Egs. B I8 are not directly appliedto calculatethe primal step direction and the dual
solutionvecta, instead,asin the null spacemethod, matrix factorisationsare used. [[34] pro-
poseda Choleskydecompsition of H

H = RR; R2R" " uppertriangula; (3.1.19)

and a QR factorisation of G, R 1. Thesefactorisationsare updated in eachiteration as
explainedin [3€], [44], [21].

3.2 Dual Active Set Metho ds

In this sectionwe give a shat descriptionof dual active set methods which have some
similaities to our proposedonline active set strategy While primal active set solversstart

at a primal feasiblepoint and producea sequencef primal feasibleiterates, dual active set
methads maintain dual feasibility until an iterate becomesalso primal feasible,and hence
optimal. This approachis equivalentto solvingthe dual of the quadratic program QP dua!

(seeDe nition EZ8) with a primal active set solver(cp. [34]). We presentthe famousdual
active set methad by Goldfab and Idnani [50], [45] which is applicableto strictly convex
quadratic programs. For an extensionto convexQPs we referto [1g].
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One motivation for developingdual QP methads is the trivial but important observation
that the pair
x©@,y@ g1 5 pdual (3.2.1)

can serveas a dual feasiblestarting point for solvingQP%@ (with an empty working set
A©). Thus, besidesthis computationallycheapmatrix-vecta calculation, no Phasel is
necessy!

In the following we divide the dual vecta y® into an active part ygk()k) and an inactive part

yl('(‘k)) , where (00 %

contain currently violated constraints). After obtaining x©; y/(f()o) = x@ it is checled if
this point is alsoprimal feasibleji.e. if Gx(@  bis satis ed. In this casethe unconstrained
minimumx©@ is alreadythe optimal solution. Otherwisea violated (primal) constraint, say

Gx©@ < bywith 1 g m, isselectedwhich shallbe satis ed (with equality) by the next

iterate x@; y/&l()l) . More generallyat iteration k we want to perfam a stepin the primal

and the dual variablessuchthat a violated constraintq 2 A®) becomesactive, and hence
feasible,at iteration k + 1:

(k+1) def ) 4 (k) .
X X 06 x1 ; 1 (3.2.2a)
(k+1) def y(k<)k) y® .
+ 1€ A (k)
Yate) g = P Q@ y& A+ f A (3.2.2b)
q

for an arbitrary k 2 N[ fOganda xed 2 R plthe de nition of the next working set
A&*1) and the projection matrix P will be introducedsoon. Note that the component
of the dual vecta careponding to the gth constraint yék) does not needto be zero as
constraintq is not feasible.The step directionsare determinedas follows:

x0 Ly 1GQuWHGWwH ' H T GY; (3.2.3a)
y(Ak()k) def WH®G, i H 168: (3.2.3b)

Therein x® is chosensuchthat all (primal) constraintsin the working set A®) remain
active, cf. Egs. (BII9 of the primal range-spacemethod. The primal-dual step length

shouldbe the minimum step length in the primal variablessuchthat the qth constraint
becomesfeasible(i.e. active); on the other hand must be small enoughto maintain
feasibility of the dual variables:

8
_ <1 if x® =
prim  def . G%® b, : (3.2.4a)
R else
y(k) )
dual def . Lkli i(k)<0 : (3.2.4b)
i2AK) yi()
n 0
def  in prim . dual . (3.2.4¢)

where the minimum over an empty set is de ned as 1 , which is greaterthan any real
number.
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If the primal step direction x®) is not zeroa primal-dual step is taken, trying to make
the gth constraintactive while maintainingdual feasibilit. Two casescan occur:

1. = Pim- A fyll stepin the primal variables can be taken, q is addedto the
working set. This meansthat A1) %" AKX [ fgg andp %' ldj ks is chosenin

J
Eq. B22D).

2. = du: Onlya partial step can be taken asthe blocking constraint
i %" argmin A((kli) y¥ <0 (3.2.5)
i2AK Y,

must be dropped from the working set in order to keep dual feasibility; constraint

q remainsinfeasible. Thus, in Eq. @2Z2B, A& €' A0 nfjg is de ned and
p &f P; deletescomponent yj(k) from the right hand sidevecta (i.e. P; equalsthe

A® + 1  A® + 1 identity matrix from which onerow is deleted).

If the primal step direction x® is zerothe gth constraint cannot be satis ed while all
other (primal) constraintsin A remainactive. Thus, no primal stepis taken in this case.
Instead, providedthat 9@ < 1 | a partial dual stepis perfamed which annihilatesone

component of y/&k(:)l) and allows to drop the carespnding active constraint from the

working set (AC*D) and p %' P; asin the secondcaseabove). If sucha constraintdoes
not exist,i.e. = d4a =1 | the quadraticprogramis infeasible

After a partial step new stepdirections x*+1), yﬂ‘(:fl)) are determinedfor the updated

working set AK*1) and constraintq is tried to madeactive, i.e. feasible,again. As soon as
a full step canbe taken (if the quadraticprogramis feasiblethis must occur if the working
setis empty, at the latest), a newviolated constraint g is chosenand the whole procedure
is repeated. If no violated constraint can be found the primal and dual feasiblesolution

XxOPt: yoPt  of QPYUd s found, which also deliversthe solution x°Pt of the carespnding
QP. We formalisethis dual active set methad in Algarithm 32 (cf. [45]).

It should be mentionedthat a violated constraint g which becameactive may become
inactive and afterwards violated again; the choiceof the step directionsonly ensureghat
active constraintsremain active. But sinceit can be shavn that the (primal) objective
function valuestrictly decrease@ everyiteration|p rovidedthat no cycling dueto primal
degeneracyccurs,seepagel3]] nite  termination of Algorithm 32 is guaranteed[45].
The stepdirection computationsin Egs. (8223 are very simila to that of the range-space
methad (cf. Section3. 12 andsimila matrix factorisationsandformulaefor matrix updates
after a working set changeexist. Therefae, alsorecallingthat there is no necessit of a
phasel, dual methads can be implementedrather e ciently .

A recentimplementationparticularly suited for large-scale spase Hessianand constraint
matricesis QPSchur [3]. It is basedon a third possibiliyy for solvingthe KKT sys-
tem B12), the so-calledSchurcomplement(seee.g. [41]).

35



Chapter 3. Existing Metho ds for Solving Quadratic Programs

Algorithm 3.2 (dual active set method)

input: strictly convexquadratic program QP

output:  optimal solutionx°Pt of QP and working set A asde nied in TheaemZ3
(or messagéehat QP is infeasible)

(1) Setk 0, obtain feasiblestarting point x©@;y© %

ing working set A© %

H 1g; andcarespnd-

(2) Choosea violatedconstraintq2 i 2A® G&® < b . If sucha constraintdoes
not exist the optimal solutionis found: setx°?  x® andA  A®. stop!

(3) Calculateprimal and dual step directions x® and yﬂ‘({) from Egs. @Z23).

(4) Computesteplength (and Pm ~ dual) vig Egs.([32Z3).
) if  x® =
if dual — 1:
stop (QP infeasible)!
else ((dal < 1)

Removeblocking constraintj = argmin Yo yi(k) < 0 from working
i2AK) Yi
set,i.e. Akt AW nfjg.
)
k k) (k+1) y y
Setx( 1) X( )1 yA(k+1)[f qg PJ ;(:IE(k)) + f(k)

aswellask k+ 1 and continuewith step (3).

6) if = Pim:
Add the formerly violated constraintq to the working set,i.e. AK*1) AR [ fqg.
)
K+l y
Setx®)  x® 4 x® ykD) ﬁg(kk)) AT

aswellask k+ 1 and continuewith step (2).

else (= dua)
Removeblocking constraintj = arg rr(1k|)n y;k(f() yi(k) < 0 from working
i2A i
set,i.e. AK*D) AW pfjg.
0
k K (k+1) y y
Setx() x, yA(k+1)[f qg P 328()) + f(k)

aswellask  k+ 1 andcontinuewith step (3).
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3.3 Interior Point Metho ds

So-calledprimal-dual interior point methods haveemergedasa strongcompetitor to active
set methads. Initially develogd for linear programming, they were extendedto convex
quadraticprogrammingandto generalnonlinea programmingafterwards. Sincea detailed
descriptionis beyond the scope of this thesiswe referto [91] for an overview.The mainidea
can be summaised as follows: rst observethat the KKT optimality conditions (223713
imply that a primal-dualpair x®;y® |k 0, is optimal if and only if

Hx® G%/(k) = g; (3.3.1a)
Gx® b; (3.3.1b)
) .
y : (3.3.1¢)
yi(k) Gx® b = 0 8i2f1:::;mg: (3.3.1d)

Interiar-point methads relaxthe so-calledcomplementay slacknesscondition (83319 to

y¥ ox® p = ® gi2f1:::;mg B310)
|
for some ®) 2 R, and produce a sequenceof iterates x®:y® which strictly satisfy
Egs. @310 and (331d. The optimal primal-dual solutionis nally found by ensuring
®1 ofork! 1.

One famousimplementationfor convexquadratic programsis LOQ81]; anotherone for
generalNLPsis Ipopt [82]. For interior point methaods, a polynomialruntime guaantee
can be givenand they possegelatively constant computationaldemands.But they su er
the drawback that no e cient warm start techniquesexist so far. \For large QPs with
many active inequalily constraintsthe interior point approach is expected to require far
fewer iterations than an active set methad to arrive at the solution. However, eachof the
interior points iterationsis manytimes more expensivethan the iterations perfamedin an
active set methad." [4].
Interior-point methads have also been proposedfor usein model predictive control [[73].
Compaisionswith activesetsolversndicatethat it dependson the problem'scharacteristics
which methad shouldbe preferred[5], [4].
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Chapter 4

An Online Active Set Strategy for
Mo del Predictive Control

4.1 Main ldea

Inspiredby the explicit solutionapproach, but aimingto avoidits prohibitive o ine compu-
tational cost, we proposean online active set strategy for usein model predictive control.
It builds on the expectation that the active set doesnot changemuch from one quadratic
program to the next, but is di erent from conventionalwarm starting techniques. For
transition from the old QP to a new one, we proposeto move on a straight line in the
parameter space,i.e., in the set P. As this setis convex,cf. Theaem [Z8, we can be
surethat all QPson this line remainfeasibleand can be solved. As long as we stay in one
critical region the QP solutiondependsa nely on wyg. If we haveto crossthe boundaies
of critical regionsduring our way on the line, whichiis illustrated in Fig. &1, Theaem[Z3
ensureghat the solution can be continuouslycontinued.

Let us assumethat we have solveda parametric quadratic program of the form (2319
for a certaininitial state wo and (after one samplingtime) want to solveit againfor a new

initial state vecta wj®" with unknavn solution xfew; yrew . By setting

f new

ng

Wo Wo Wo ; (4.1.1a)
g € g™ gwo)= FO wo; (4.1.1b)
b L' pwl™) bwo) = E wo; (4.1.1c)

we can re-paameterisegradientand right hand sidevecta as follows:
Wwo: [0;1]! R"™; wo( ) et Wo+  Wp; (4.1.2a)
g: [0 R: o) F gwo)+ g (4.1.2b)
B:[0:1]! R™; ) % bwy)+ b (4.1.2¢)

This leadsto a re-paameterisedform of QP (wy):

QP( ): min IXHx + x%( ) (4.1.3a)
st Gx o): (4.1.3b)
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Accading to our assumption,we know the solution x°Pt and y°?' (and a carespnding
working set A) of QP(wp) and want to solve QP(wg®"). The basicidea of our online
active set strategy which has previouslybeen proposedby [[I7] in a di erent context, is
to move from wq towards wje¥, and thus from x°Pt; yoPt towards Xpew; Yeew , While
keepingprimal and dual feasibility (i.e. optimality) for all intermediatepoints. This means

that we are looking for homotopies

x°Pt: [0;1]! R"; x°PL(0) = xOP; xOPt(1) = xOBL - (4.1.4a)
yP 01! R™; yPH0) = Yo ¥PH(1) = Yew: (4.1.4b)
A:[0;1]!  fBEMe xO)= A A() fl:iiiimg; (4.1.4c)
ropay fEEme () ¥ mgnA(); (4.1.4d)

which satisfythe conditionsof Theaem[ZJ at everypoint 2 [0; 1]:
| |

H GO = xopt() |
GA( | A() y;r(’t() ()) = bp;(gf()) : (4.1.5a)
Gy ¥P'( ) by () (4.1.5b)
y:(pt)( )y = (4.1.5c)
ygf(’t)( ) : (4.1.5d)

This impliesthat x°P'( ) and y°P!( ) are piecewisdinea functionsandthat x°°!( ) is also
continuous as shavn in TheaemZ8 Thus, locally we must havea relation of the form

X_opt() d:ef XOpt+ XOPt; (4163)
T e @260

which holdsfor su ciently small 2 [0; max], max 2 R o.

Becausewe start from an optimal solutionwe know that conditions(.1.9) are satis ed at
= 0. Therefoe equaliy (153 is satis ed for all 2 [0; max] if and only if

H G2 X OPt g
= 4.1.7
Ga yor ba ( )

holds. Becauseit will be ensuredthat all rows of Ga are linealy independent, Eq. (A4
hasa uniguesolution, as shovn in LemmalZ2
The active set stays constant as long as no previouslyinactive constraint becomesactive
(cf. @IRD), i.e.

G2 x%Pt+  x%P' = p(we)+ b (4.1.8)

for somei 2 1(0), and no previouslyactive constraintbecomesnactive (cf. (£1.5d), i.e.

opt

Y, yi = 0 (4.1.9)
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4.1. Main Ildea

Figure4.1: Homotopy pathsfrom one QP to the next acrossmultiple critical regions.

for somei 2 A(0). Therefae, we determinethe maximumpossiblehomotogy step length
max as followsa:

o

prim  def ; b (wo) Gioxopt
max - mi

G x®'< b 2R y; (4.1.10a)

i2r0) , GP x°Pt b
O o )
def . yi
dial = min - yi<0 2R g; (4.1.10b)
i2&(0) Yi
def n i 0
max = min 1; prim. dual5g.q7. (4.1.10c)
This choiceof max ensureghat conditions(@1.50) and (I1.5d remainful lled. Moreover,
if wedene yo™ ©"  then alsoequality @5 holdsfor all 2 [0; ma]-

Our onlineactive set strategyis summaisedin Algarithm B (wherethe homotoyy interval

[0; 1] is implicitly rescaledafter each working set change, for notational simplicity and
implementationelegance).

! Again, the minimum over an empty setis de ned as 1 .
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Algorithm 4.1 (online active set strategy)

input: data and solution x°Pt; yoPt  of QP (wp),
carespndingworking setA,
new parameterwg®™ 2 P

output:  solutionpair xpew; yaew of QP(wgev),
carespnding working set A€W

(1) Calculate wg, gand byviaEqgs. @I11).
(2) Calculateprimal and dual stepdirections x°Pt and y°P! via Eq. (E19).
(3) Determinemaximumhomotoyy steplength max from Egs. (E110).

(4) Obtain optimal solution of QP (wy):

(@) wo  Wop+ max Wo,
(b) xopt Xopt+ max Xopt’

(c) ¥oPt  yoP 4+ yOPL

(6) if max=1

Optimal solution of QP(wg®") found.

Setx9B,  xPt yoRL ¢t gand AMW A stop!

(6) if  max = ,?1%3'1

pt

yjo

Removea dual blocking constraintj 2 A dua = - from working set,

ie.A  Anfjg.

elseif  max = hax:

prim _ b (wo) GIx°

Add a primal blocking constraint j max = gu o —p (O working set,

Gl b

i,e. A A[ fjg, whileensuringlinea independencesee Sectiond.R]).

(7) Setwy Wy, xOPt  xOPt yoPt  wOPt gnd continuewith step (1).
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4.2 Real-Time Variant

One advantageof our online active set strategy s that it producesa sequencef optimal
solutionsfor QPs on the homotogy path. Thus, it is possibleto interrupt this sequence
after everypartial stepandstart a newhomotopy from the currentiterate towards the next
QP. In paticular, no Phasel asin standad active setmethadsis neccessy becauseevery
iterate is optimal and therefae feasible.Of course,if we interrupt the homotopy befae the
solutionis reachedwe may stop at an infeasiblepoint with respect to the QP we want to
solve.

In a real-time scenaio onecantry to nd the optimal solution of the current QP within
a given samplingtime. But if too many working set changesare nessesy to get from
the solution of the old QP to that of the current QP one canjust stop the solution of the
currentQP andstart a newhomotopy towardsthe solutionof the newone. If the solutionof
the new QP requiresfewer working set changeghan computablewithin the givensampling
time the online active set strategy may make up for someunperfamed changesfrom the
last QP. This situation s illustrated in Figureld whereinonly two working setchangesare
alloved per QP.

The computationale ort per working set changeis known rather exactly seeSectiond. 6.1
So, if one obtainsan estimatefor the number of optimal active set changesfrom one QP
to the next, e.g. from closed-l@p simulations,it is easyto estimatethe possiblesampling
time length

Wo

Figure4.2: Homotopy paths(solid) from oneQP to the nextwith limited number of working
setchanges.

Note that our online active set strategy has somefeaturessimila to the dual active set
methad, seeSection3.2, andits adaptationto fast MPC [84]: both allow QP warm starting
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without a phasel. Wheniterations are terminatedprematurely however,our methad solves
a QP that is exactlyknown to lie onthe straightline betweenQP(wo) and QP(wg®"), while
the dual active setmethad deliversin eachiteration the solutionto an unknown primal QP.

Using the real-time variant of our online active set strategy it is reasonablgo assumea
greater probability (compaed with the dual approach) of reachingat leastthe con dence
region of the measurednitial state wp.

4.3 Implementation Details

4.3.1 Bounds and Constraints

Insteadof the generalformulation (Z3:19), our onlineactive set strategywas implemented
for QPs of the following form:

min 2XH x + x%(wo) (4.3.1a)
st: bg(Wo) x  bg(wp); (4.3.1b)
bc(wo)  Gx  bc(wo); (4.3.1¢)

whereG 2 R™ ", bg(wo); bs(wo) 2 R" and bc(wp); bc(wo) 2 R™ for all wo 2 P.
This distinction between constraints and bounds seemsadequatebecausebounds arise
naturally in the context of model predictive control and special treatment of them can
leadto substantialcomputionalsavingsas descriked in [39]. Seealso Section.6.1 where
complexiy issuesare addressed.

Similar to De nition [ZY9 we give the following

De nition 4.1 (free and xed variables): Let a feasiblequadratic program of the form
HE#3D) be given. A vaiablex;, 1 i n, is called xed (and the caresmpnding bound
active x 2 F i

Xi = bg(Wo)i _ Xi = bg(Wo);

holdsand free otherwise. The (disjoint) index sets

Fx) % i2f1:::;ngjx free ;

ef

X(x) = i2f1:::;ng jXx; xed

Q.

are called set of free variablesand setof xed variables respectively

De nition 4.2 (working set of variables): Let a feasiblequadratic program of the form
(3 be given. Then arbitrary indexsets

F fl,:::;ng;

are calledworking set!offreevariablesand working set!of xed variables respectively Their
cadinalitiesare denotedby



4.3. Implementation Details

For everyfeasiblepoint x of the QP (B3) there exist carespnding working setsof free
and xed variablesF  F(x) and X aswell asa working setA  A(x). That meansthat
we can rearangethe componentsof x suchthat

Idnx XF _ tb(
Ce  Cx Xx = ba (4.3.2)

is valid, where C def Ga and by 2 R"™ and by 2 R" contain suitable subsetsof the
componentsof bg (Wo)x, bs (Wo)x and bc(Wo)a, bc(Wo)a, respectively We call C active
constraints matrix and the left hand side matrix of Eq. (33 augmentedactive con-
straints matrix. This reresentationof xed variablesand active constraintswill be useful
in SectionZ.3:3 whenmatrix updatesare to be descriled.

4.3.2 Null Space Approach

Our implementationis basedon the null spaceappoach (cf. SectionBI) for solving
the KKT system(Id). For this choiceseveralreasonswere decisive: rst, asexplained
in Chapterld, the null spacemethad is particularly numericallystable and, in contrast to

the range spacemethad and the dual approach, no positive de nite Hessianmatrix is re-

quired; instead, a positive de nite projected Hessianmatrix is su cient which facilitates
extensiondor dealingwith positive semi-de nite Hessianmatrices (including linea objec-
tive functions). Furthermae, computationalsavingsdue to the distinction of boundsand

constraints,which seemsnell justi ed within MPC problems,are \most readilyachievedn

null spacemethods." [34] Finally, whenusingthe null spaceappgroachthe more boundsand

constraintsare active the lesscomputationale ort is requiredper working set change. So,

the proposedonline active set strategytakesthe most computationaltime per working set

changeif the controlled systemis nea the steady-stateand almost no active set changes
occur. If, e.g. after a strong pertubation, the controlled systemis far from its steady-state
and typically many optimal active set changesare neccessg our online active set strat-

egy can perfam more working set changesper samplingtime than nea the steady-state.
Section.6 illustratesthat a signi cant amount of computationale ort is savedif many
boundsbecomeactive.

The distinction of boundsand constraintsmakes necessy adaptationsof the matrix de-
compositionsand of the way the KKT system(Z.1J) is solvedin order to determinethe
primal-dualstepdirection. Therefae, both matricesare suldividedinto parts carespnding
to freeand xed variables,respectively:

Cr Cy B def oy (4.3.32)
XX
0
XE He Hwm XF def gy
= : 4 .

whereHg 2 R"F "F Hy 2 R™ "X, Hy 2 R"F ™ andCg 2 R"A "F, Cx 2 R"» x|
Accadingly, not the whole active constraint matrix C is decommsedbut only that part
which carespndsto the free variablesF. Insteadof the common QR decompmsition a
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variant called TQ factorisation, as proposedin [[39], is maintainedduring the iterations:

ce = v v (4.3.4a)
0 1
U 0 0 U 0 def -1
() Cr = VO = i 1dn v idh E'B K (4.3.4b)
1
() Cg = T QY (4.3.4¢)

whereV 2 R"F "F is an orthonamal and U 2 R"A "A an upper triangula matrix. Thus,

def . , . def .
TE Uold[]A is a reverseower triangula matrix and Qr = Idp,.V is orthonarmal because

both factors Idj,_ and V are. Matrix Q is subdividedinto

ZF Y|: = QF (435)

whereZg 2 R"F ("F Na) containsa basisof the null spacerestrictedto free variablesand
Ye 2 R"F Ma s formed by rangespacebasisvectas of Cg. This leadsto the following

De nition 4.3 (restricted null space): Let Q be an orthonormal matrix as de ned in
Egs.([@332) andlet Zg denotethe (N na) leftmost columnsof Qg. Then

im Ze R"F

is called restrictednull spaceof the active constraints. Its dimensionis denotedby

def
nz:e N Na:

A Choleskydecompsition is only calculatedfor the Hessiarprojectedto the restrictednull

spaceof Cg:
RR & 720z (4.3.6)

whereR 2 R"zZ "z is an upper triangula matrix.

After the adaptationof the matrix decompsitionswe now havea closerlook at the way the
primal-dualstep directionis determined.To this endthe KKT system(Z17) is subdivided
into freeand xed variables:

0 10 1 0 1
He Hwm c XF OF
HO Hx Idn, CO g% Xx § % Ox §
= : 4.3.7
% ldn, Yx bx ( )
CF Cx Ya bA

where xg 2 R" and xx 2 R"™ denotethe primal step direction of free and xed
variables,respectively; yx 2 R™ and ya 2 R"™ denotethe dual stepdirection of active
boundsand constraints,respectively; gr 2 R"F and gx 2 R" denotethe gradientstep
direction for free and xed variables,resgectively; bx 2 R"* denotesthe step direction
of the active boundsvectdsﬁ and by 2 R"A denotesthe step direction of the active
constraintsvectdsﬁ.

2A suitable subsetof the lower and upper (constraints') boundsvectas, to be more precise.
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Then we usethe orthonaormal matrix Qg to perfam a coordinate transfamation: with the

de nition 0 1
28
Yo
Sd_Ef Id 2 RN Nx+Na 438
- nx (4.3.8)
Id,
ldn,
we obtain
0 0 0 0 0~0 1
0 EMNF4&F EAFTYF gMAwm rCE
O h. Hy co 1 ZPHeZe ZEHeYe ZEH zgcy
HO H Id CO YFHFZF YFHFYF YFHM YFCF
s% M IOIx nx xﬁso = HOZr HOYe  Hx Id,, C% &;(4.3.9a)
Cr Cy I,
] X 0 1 CrZe CrYe Cx
XZ 0 1
xY XF
F def Xx §
XX = S gy K (4.3.9b)
illz YA
0 o2 ! 0 1
gY OF
P der o &
% gxg - S% b & (4.3.9¢)
bx
b
ba A

This leadsto the following linea systemfor determinationof the primal-dualstepdirections

0 o o 10 , 1 0 , 1
RR  Z2HeYr Z%Hp X& of
YOHEeZE YOHEYE Y2Hu TO x[ o
HYZe  HYYe Hx Idn, C% Xx = Ox (4.3.10)
Idnx YX tb(
T Cx Ya bA
with the following solutions:
Xx = bx ; (4.3.11a)
x¢ = T Y ba Cx xx); (4.3.11b)
x¢ = RYRY 1 gf+2Z8 HeYg xf+Hw xx ;  (4.3.11c)
yva = (MY 1 of +YS(HE Xg+ Hy xx) ; (4.3.11d)
yx = HY X+ Hx xx+C% ya+ ox; (4.3.11e)
with  xe % Ze xZ+Ye x!: (4.3.11f)

Thesecalculationscan be simpli ed by exploiting common subexpessions. Moreover, it
is possibleto acceleratethe calculationif the currently active boundsby or constraints’
boundshy (cf. Eq. @33) do not dependon wg, andthus by = or by =
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4.3.3 Matrix Updates

Until the solutionand a carespondingoptimal working setis found, the currentworking set
mustbe modi ed by addingor removinga boundor a constraintin eachiteration. Further-
more, decompsitionsof the projected Hessianmatrix Z 2H Zg and the active constraints
matrix Cg haveto be maintainedin orderto e ciently computenew stepdirections. How-

ever, re-computationin eachiteration would foil this bene t becausecalculationsof both

the Choleskydecompmsition as well as the TQ factarisation require O(n?) oating-p oint
operations. Instead, becausea singleworking set changea ects thesedecompsitionsin

a rather simpleway, it is possibleto reducethe e ort to O(n?) oating-p oint operations
(per iteration) by using so-calledmatrix updates

In this subsectionwe will descrile the matrix updatesusedin our implementationwhich
are speciallytailored to the context whereboundsand constraintsare distinguished. The
presentationis basedon [3Y], complexiy issuesare examinedin Section6.1 We start

with a brief summay of Givensplane rotations which are a necessy prerequisitefor the
proposedmatrix updates.

Givens Plane Rotations

A Givensplanerotation can be expessedas a matrix of the following form (cf. [43] and

e.g. [44): .

oi ()% s ;' 2[0;2): (43.12)

sin' cos'

Herein' canbe chosenis sucha way that the j -th componentof a vecta v 2 R" becomes
zeroif v is premultipliedby O" (* ):
8

3 vicos' +vy;sin’ if k=i
ol (), = s sin' +vjcos'  ifk=] (4.3.13)
Vi else
which impliesthat
O¥(). =0 () cos = G A sin' = g (4.3.14)
! V2 + V2 V2 + V2

J J

By de nition everymatrix O" () is orthonarmal with determinantone. Therefae pre-
multiplication by O" (' ) can be interpreted as a countercla@kwise rotation in the (i; j)
coordinate plane,which explainsthe name.
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Successivapplication of Givensplanerotations allows to introduce certain zero patterns
into a vecta or, esgecially another matrix. For exampleit is possibleto transfam an
arbitrary matrix into an upper triangula matrix. While this canalsobe done,evenat lower
computationalcosts,via Gaussiarelimination a veryimportant advantageof Givensplane
rotations is that they are particularly numericallystable becauseof their orthonarmality.

In practice, formulae di erent from those givenin (314 for computation of cos' and
sin' are usedin order to prevent possibleover ow [21]. Furthermae, computational
savingsare possiblewhen multiplying O'J (* ) with a matrix. Of course,from (Z3.L13 it
is evidentthat only two rows (or columns,if O' (* ) is multiplied from the right) haveto
be involvedinto the calculation. But mareover, there are ways to reducethe number of
multiplications neccessg per step from four, asin (313, to three or evento two|so-
calledfast planerotations [44], [1]. However, this comesat the expenseof considerable
overheadwhich can, evenin the caseof large matrices, outweigh the bene t [49g]. In our
implementationwe tried (313, which requiresfour multiplications and two additions,
and a variant descriled in [21], which requiresthree multiplications and three additions,
and found both almostequallye cient.

Matrix Permutations

Whenapplyingmatrix updatesit is sometimeselpfulto permutethe vecta of freevariables
Xg whichresultsin rearangementsf rows or columnsof the involvedmatrices. Therefae,
befae descriptionsof the actual matrix updates are given, we shaov the mathematical
justi cation of thesepermutations:

Permutation of the vecta of free variablesx is equivalentto multiplying it with a non-
singula squae matrix P:

R L' Pxp;  whereP 2 f0; 1g" "; PP = 1d: (4.3.15)

This leadsto the following expessions:

CeXg = CFP(PXF = CFR‘F; (4.3.163.)
CeQr = CePPQr = CrOf; (4.3.16b)
ZOHeZE = ZWPPHPPZE = 2082, (4.3.16¢)
where C: €' CeP® O ' PQr; 2L PZe; B E PHEPC (4.3.16d)

This meansthat we haveto rearangethe columnsof Cg, the rows of Qg and Zg (and Yg)

aswell asthe rows and the columsof Hg in the sameway asthe componentsof vecta Xg;

the matricesR and T are not a ected. Becausehe resultingtransfamed QP is completely
equivalentto the original one we omit matrix P from now on.

Thesepermutationsare implementedby meansof an index list of free variableswhich is

realisedasa doublelinked list. Elementsof xg and the mentionedmatricesare accessedia

this indexlist whichis necessa anyway if explicit re-staing while working with submatrices
shall be avoided. The latter is also the reasonwhy an index list of active constraintsis

held, too. It is obviousthat the order of (active) constraintswithin a QP is arbitrary.

49



Chapter 4. An Online Active Set Strategy for Mo del Predictive Control

Wheniillustrating certain matrix modi cation processeghe following symiols are used:
denotesa non-zeroelementthat is not modi ed,
denotesa non-zeroelementthat is modi ed,
denotesa previouslynon-zeroelementthat is annihilated,
denotesa previouslyzeroelementthat is lled in,
denotesa zeroelementthat is not modi ed (sameas blank),
denotesan elementof a row or a columnto be removedfrom a matrix.

Adding a Constraint to Working Set

First, we considerthe casewhena constraintis addedto the working set. Accading to
the above-mentionedemaks on matrix permutationswe assumewithout lossof generaliy
that the newly active constraintis addedas the last row of C. Thus, the row number of
C (= Ga), the columnnumber of Yg and the dimensionof T increaseby one while the
columnnumber of Zg decreasedy one. Let

Pew = GO0 2RY, (4.3.17a)
Oy = 00 w0 & gy, o R (4.3.17b)

denote the row of C caresmpnding to the newly active constraint (again, optimisation
variablesare permutedproperly) andthe newlastrow of T, respectively Thenthe following
equationholds:

Ce T .
CIQEWQF = CEeWO Qr = tgewo thWO : (4'3'18)

In order to transfam the right handsideof (E3I8 into the reversdower triangalur matrix
Thew @ sequencenf Givensplanerotations is appliedfrom the right. For the caseng = 7
andna = 3 (nx®" = 4) this canbe illustrated as follows:

0 1 0

6 - 5

=

@w <
>0
@ <
>0

Usingthe notation introducedin Eq. (3123 this transfamation formally means

def T

Toew = inewo gewo OZ'('1) 11 O™ (', 4)  (4.3.193)
z Y
o T
= tnewo ; new 6 O;
new Ly
pw T Qe OFL(q) 1 0" Ay, g): (4.3.19b)

Note that Qf*" is alsoan orthonarmal matrix sinceall Givensplanerotation matricesare
orthonarmal. By de nition, the null spacebasismatrix Z¢ is transfamedthe sameway as
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Qr in Eq. (£3130. Note, however,that the rightmost columnof Z ¢ becomeshe leftmost
columnof Y sincethe dimensionof the null spacedecreasedy onewhenaddinga new
constraintto the working seE The transfamation of Z¢ alsoa ects the Choleskyfactor
of the reducedHessianmatrix Z 2H Zr in the following way:

@m <
>0+
@m <
>0+
@m <
>0 -
@ <
>0

Again, this illustration depictsthe caseng = 7, na = 3 (n}®" = 4) andnz = 4 (n3*¥ = 3)
where besidesmatrix R alsothe vecta t3®"Cis shawn at the top for clarity. The chosen
order of the Givensplanerotationsimpliesthat the upper triangular form of matrix R is only
slightly destrged: only one additional subdiagonalelementis introducedin eachcolumn
of Rint, which denotesthe resultingintermediateCholeskyfactor. In order to restae the
upper triangular form anothersequencef Givensplanerotationsis appliedto Rint:

0 1 0 1 0 1 0 1

b kB &5 k& K

Algelraically thesetransfamations of R can be expessedas

Rint %' Hzzpew (4.3.20a)
= H2Zg OFY(4) i 02"z (. ) P
def 2, . ,

Rnew = 01'2( ny) iio O iz ( 2nz 1)) Rint; (4.3.20b)

whereP is a projection matrix which removesthe rightmost column. Furthermae, if we

de ne 0 £ ot2(" ng) it ONz BNz, ), it is obviousthat the secondsequencef
Givensplanerotations doesnot a ect other matrices:

ZEeW(HZEeW = R%tRint = RSEWRQ}ORWW = RgeWRneW: (4.3.21)

Adding a Bound to Working Set

When adding a bound to the working set we can assumethat the variable to be xed
carespndsto the last column of the matrix C by applyingan appropriate permutation.
Thus, the columnnumber of C and Zg aswell as the dimensionof Qg are decreasedy
one; the dimensionof T does not change. Addition of a bound on the last free variable

3This is actually only true underthe asumptionthat C2®" hasfull row rank. SectionEE5 descrites how
this can be maintained.
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appendsthe (transposed)ng-th coordinate vecta eﬁF 2 R", eﬂF 2 R"F, at the top of
the augmentedactive constraintsmatrix:

0 0 1 0 tneWO tneWO 1
Ng QF Z Y

@ ldn, A i ldn, A: (4.3.22)
Ce Cx nx T Cx

The updated TQ factorisation is obtainedby reducingthe topmost row of the right hand
sidematrix of Eq. (322 to the ng-th coordinate vecta via a sequencenf Givensplane
rotations:

0w 1
@ 1 AE % oMey oW, ) (4323)
Idnx %
0 1 1 0 tgewo thWO 1
@ ldy, A & @ Idn, A O%1( 1) 12 O"FF (1) (4.3.23b)
Thew Cnp Cx T Cx

whereC, . denotesthe columnof C which carespndsto the newly xed variable.

The rst (nz 1) GivensplanerotationsOZ1(* 1) ::: O"zi"z (" = 1), nz ng, alterthe
columnsof Qf (i.e. Zg) in the sameway asdescriled abovefor the casewherea constraint
is addedto the working set. Therefae, anothersequencef Givensplanerotations hasto
be appliedin orderto restae the upper triangular form of Rjy¢, too.

The last (ng  nz) Givensplanerotations O"z*1:nz(* ) ::: O"FNF 1" = 1) havethe
e ect of lling in elementsabove the reversediagonalof matrix T, therely shifting it one
position to the left and transfaming it into Tpew. We picture this processfor ng = 4
(N = 3), nz = 1(n%®" = 0) andnp = 3; the topmostrow of the right hand sidematrix
of Eq. (322 is shavn at the top:

Removing a Constraint from Working Set

We considerthe situation wherethe i-th, 1 i  np, of the currently active constraints
shallbe removedfrom the working set. Thenthe row number of C andthe dimensionof T

are decreasedy one;the columnnumber of Z¢ and the dimensionof R increaseby one.

First, the i-th row is removedfrom both C¢ and T leadingto the matrices CF®¥ 2

RMA D "F and Ti; 2 R D Na gatisfying

CL™Qr=  Timt (4.3.24)
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Next, Tint istransfamedto reverseupper triangula form whichis achievedvia Givensplane
rotations appliedto the columns1 throughii:

Toew & Tpe ONzHinz+i 1oy ... Qnz+2inz+l( )4 3 25q)

r';ew d:ef Onz+i;nz+i l(li l) e Onz+2;nz+l(| 1): (4325b)

We illustrate the transfamation of T for the casena = 4 (n}®" = 3) andi = 3:

0 S 1 0 1 0 1
% §@ A @ A @ A

Equation (@3.250) shaws that Zg within Qf is not alteredby the mentionedGivensplane
rotations. Thus, Z2®" isidenticalto Zr exceptfor the additionalrightmost columnz®" 2
R"F which is a linea combinationof columns1 throughi of Yg. This fact providesan
e cient possibility to calculatethe new Choleskyfactor Rnew from R (with rpew 2 R"Z,
%ew 2 R>0):

ziewqqnewznew — RO Row (4.3.26a)
V4 RO R r
He Zg z*V = new 4.3.26b
0) dewo FooFoF rﬂew Yhew YBew ( )
ZOHgZg  ZOHpzpew RR R% new
= 4.3.26¢C
( ) ZEEWOH FZF er;ewq_| lergew rgewlg rgewr new * 0/ﬁew ( )
( ) rneW = Ro ! Z gH FZEeW A %ew = I’gewl’ new ZEqu_I FZEeW (4326d)

Note that HP®" = Hg and that the radicandwithin Eq. (23269 is positive as long as
Zpewdq pewznew 2 5 . This both necessay andsu cient criterion canactuallybe usedto
checkpositive de nitenessof the projected Hessianmatrix during the runtime. Moreover,
it is worth mentioningthat calculationof the new Choleskyfactor R ey Via (E328) is only
possibleif z?*" is appendedas the rightmost column of Z2¥. This fact motivates the
usageof a TQ decommsition becausez*" would be addedas the leftmost columnif we
were usingthe usual QR decompsition instead.

Removing a Bound from Working Set

Removinga boundfrom the working setmeansto freea previously xed variable. Therefae,
the columnnumber of C and Zg aswell asthe dimensionof Qr andR are increasedy one;
the dimensionof T is unaltered. Applying a suitable permutation, we can assumewithout
lossof generaliy that the (ng + 1)-th variable,i.e. the rst xed one,is to be freedfrom
its bound. Then the leftmost columnof Cx becomeshe rightmost columncf®” 2 R" of
Ccpew:

0
|dn;1<ew QF A = Idn?(ew .
CF Crllew CQEW 1 - T CEeW C)rzew ! (4'3'27)

|dn;ew
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whereCReWw 2 R" ("x 1) denotesmatrix Cx without columncRe¥.
Thus, a sequencef Givensplanerotations is usedin order to reduce(T cg2®%) to reverse
lower triangular form (illustrated for np = 3):

0 1 0 1 0 1 0 1
@ A @ A @ A @ A

Algelraically the e ects on T and Qf can be expgessedas

Toow def ( Tt CEeW) OnF+l;nF(- D Onz+2;nz+l(- e n,) (4.3.28a)

Qew & QF L OMFTHTRC D) i OMTENITC ) (4.3.28D)
This sequencenf Givensplanerotations doesnot a ect the old null spacebasismatrix Z
but the new rightmost column of Z f*":

new
4 Zr Zp ;. MW 2 Rnfog: (4.3.29)

new
F

This changeof Z¢ alsocausesHg to be modi ed. Like in the casewherea constraintis
removedfrom the working set, no fresh Choleskydecompmsition must be perfamed but
the following e cient update schemecan be appliedinstead:

zpewoqpewzpew = RO Rnew (4.3.30a)

Zg He hr';ew Ze ZEeW RO R TInew
= 4.3.30b
() ZEEWO Eew hEeWO new 'r:1ew rgew /ﬁew 0 w ( )
0) Fnew = &RO) YZO(Hezew + pewpnew) (4.3.30c)
N O%ew = ZPOWO(HpzpeW + 2 pewhpew) + pew( new)2 0 rnew: (4.3.30d)

Again, the radicandwithin Eq. (B23:309) is positive providedthat ZeWH pewzhew 2 5 .

4.4 |nitialisation

In order to initialise our online active set strategyan optimal solution pair of the initial QP

and a carespnding working set A must be available. So the questionnaturally arisesof

how to obtain this information. One possibility would be to solvethe initial QP by means
of a standad active set QP solver. But this would be ratherinconvenientinceall the e ort

neededto implementand setup sucha solverwould be necessg just for the solution of

the very rst QP. Instead,our onlineactive set strategyallows for an easyworkaround: one
simply hasto set up a QP whosesolutionis knowvn. A straightfaward ideais to \solve"

the following QP:

min $XH x (4.4.1a)
st b x b; (4.4.1b)
b Gx b; (4.4.1¢)
wherethe gradientis setto zeroand b is arbitrary.
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Lemma 4.1 (initialisation): If b then ( ; ) is a primal-dual solution pair of the
quadratic program (4.1 with carespndingworking setA = ;.

Proof: If A isassumedo be empty the KKT conditionsof Theaem[ZH havethe following
form:

Hx%t =
yopt —

b GxOPt b:

It is obviousthat they are satis ed by the choice x°Pt;yopt %f( .y

Therefae we canstart from ( ; ) and useour usualhomotogy to go towards the solution
of the initial QP.

This strategyalsoworks for equality constraints: Let usassumehat ourinitial QP compises
the constraint
Gix : 2R; i2fl:::;mg: (4.4.2)

If this equality constraintis relaxedto the inequality constraint
Gix ; 2R g (4.4.3)

will be both shifted towards . As soon as one of the constraint's boundsbecomes
active,andthis musthappenby the time they coincide,the constraintwill not be considered
whendetermingthe maximumdual stepsize 842" anymae and thus will stay active for all
following iterations.
However, if thereare ngc min fn; mg equality constraintsthis procedureleadsto ngc
unnecessy working set changessinceall equality constraintswill nally becomeactive. In
order to avoid this, it is possibleto start at ( ; ) and includethe indicesof all equality
constraintsinto the initial working set A(and the carrespnding part of bto zero). Similar
to Lemmal], it canbe shovn that ( ; ) is still a primal-dual solution. Of course,in this
casethe TQ factorisation Ck = ( T) Q2 aswell asthe Choleskydecompmsition hasto be
calculatedbefare starting the initial homotopy.

4.5 Degeneracy Handling

4.5.1 Linear Dependence of Constraints

Our algaithm requiresthat the KKT matrix in Eq. (B35 is nonsingula. Becauseof the
assumedositive de nitenessof H this property holdsif and only if the augmentedactive

constraintsmatrix
Idn,

Ce Cx

hasfull row rank (seeLemmalZd). Sincedeletionof a row cannotleadto rank de ciency
linea independenceonly needsto be ensuredif a row is addedto the augmentedactive
constraintsmatrix, i.e. if a bound or a constraintis addedto the working set.
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In order to clarify the idea, handling of linea dependenceis descrited for QPs where
boundsare treated as ordinary constraints, rst. Re nementsof this appgoachtailored to
our problemformulation andthe way we solvethe KKT systemwill be presentedafterwards.
In the casethat constraintj 2 A shall be addedto the working set [11] proposedthe
solution of the following auxiliay systemas a test if Gj0 and the rows of G5 (= C) are
linealy independent:

H G p G?

= 45.1
Ga q (4.5.1)

wherep 2 R" andg2 R"A.

Lemma 4.2 (linear independence check): Providedthat Ga hasfull row rank, GjO and
the rows of Ga are linealy independentif and only if Eq. (£5) has a solution with

p6

Proof: SinceGp isassumedo havefull row rank, linea dependencenf Gj0 andthe columns
of G is equivalentto X
9g2R™: G’+  §G)= : (4.5.2)
i2A
Thus, if Gj0 and the columnsof G, are linealy dependent(p;q) d=Gf( ;@) is obviously
a solution of (AL). Accading to LemmalZA this solution is unique which impliesthat
Eqg. (5 hasno solutionwith p 6
Onthe other hand, if Gj0 andthe columnsof G arelinealy independent(and thus Gj0 6 )
there existsno ¢ 2 R"A that satis es Eq. (A532). Therefae Eq. (L) hasno solution
with p = . But sinceLemmalZd guaanteesthe existenceof a solution there must be a
solution of Eq. (@&1) with p 6

So,if p6 we canconcludethat the active constraintmatrix keepsfull row rank after the
addition of constraintj to the working set. Otherwise the componentsof vecta g and the
currentdual vecta yzpt canbe usedto determinea currently active constraintwhich must

be removedbefae addingconstraintj to the working set: In this case

X
91q2 R™: G = GG? (4.5.3)
i2A

holds, wherethe uniquenes®of g follows from the full row rank of G, andit dependson
the componentsof g how we proceed. If q all following QPs on the current homotopy
path are infeasibleasthe bounday of the setP of admissiblenitial valuesis reached(this
will be shavn in Section5.d). Instead,we assumethat at least one component of g is
positive. Then the following resultis valid (taken from [[11]):

Theorem 4.1 (ensuring linear independence of the active constraints): LetGa bethe
current active constraintsmatrix with full row rank and Gjo, j Z A, the constraintto be
addedto the working set A. Moreover, assumethat there exista vecta q 2 R"A asin
Eq. (R with at least one positive component and let  x°P'( 1); y¥°Pt( 1) denotethe
optimal primal-dual solution pair at the currentpoint ; 2 R o on the homotoyy path.
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Then the matrix
def

Ghnew 5 Anew = (A[ fjg)nfkg (4.5.4)
opt

k % argmin i (1) G>0 (4.5.5)
i2A Gi

alsohasfull row rank.

Proof: Because x°P'( 1); ¥°P'( 1) is a primal-dual optimal solution the KKT condi-

tion (153 holds,i.e.

X
HxP'( )+ e(1) = GHP(): (4.5.6)
i2A
By multiplying Eq. (ER3 with an arbitrary 2 R ( and subtracting the result from
Eq. @50 we yield

X
HXP'()+e(1) = GP+ G y"(1) qi : (4.5.7)
i2A
Thus and the coe cients yLiOpt( 1) Qi are alsoa valid dual solution vecta which
satis es the KKT conditions (I3 as long as all coe cients remain nonnegative. The
largestvalueof for which this conditionis satis ed is %iven by
def

opt
max — Min i (1)

i 5 G>0 2R o: (4.5.8)

Note that this minimum is determinedovera nonempy setaccading to our assumptions.
Let k denotethe constraint for which the minimum is attained, then yfpt( 1) is reduced
to zero and constraint k can thus be removedfrom the working set. Sincegx > O the

constraintvecta Gj0 is linealy independentfrom the G?, i 2 A nfkg, and therefae matrix

Gy s Anew E' (AT fjg) nfkg hasfull row rank.

This result providesa computationallyconvenientway for choosinga linealy independent
subsetof active constraints,if necessg. But it doesnot guaanteethat this choiceallows
to make further progressalong the homotogy path becauset might be that constraintk
immediatelybecomesactive again. In order to provethat this cannothappen undercertain
conditionswe needthe following de nition from [83:

De nition 4.4 (ties): The quadratic program (1.3 has

primal tiesat ¢ 2 [0;1] if far < dual and the minimum (@109 is obtainedfor
at leasttwo distinct indices;

dualtiesat o2 [0;1]if dual < PIM andthe minimum (@100 is obtainedfor at
leasttwo distinct indices;

primal-dualtiesat ¢ 2 [0;1]if dual = prim .
tiesat 2 [0;1] if it hasprimal, dual or primal-dualties.

If ties occurthere are di erent possibilitieshow to choosethe newworking setwhich poses
additional di culties. Otherwisethe new working set is uniquely determinedand we can
prove the following theaem (taken from [[11]):
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Theorem 4.2: If the assumptionsof Theaem 1 hold and if no ties occur at ;, then
constraintk remainsinactive within an interval ( 1; 2], 2> 1, onthe homotopy path.

Proof. The current linea line segmentx( o) + x( o) of the primal optimal solution
homotopy, starting at some o 2 [0; 1] andendingat 1, waschosensuchthat

Ga ¥(0)+ x(o0) = Ba() 8 2][01]; (4.5.9a)
G x(o)+ x(o) < B() 8 2(1] (4.5.9b)

hold. Thus, by multiplying Eq. R3) with x( ¢) + X( o), one obtains the following
equation
ghi() < B() 8 2( 1l (4.5.10)
i2A
Within the next step of Algarithm B, the new linea line segmentof x( 1) +  x( 1),
starting at 1 and endingat some » 2 [ 1; 1], is chosensuchthat

GOx( 1)+ x(1) = B() 8i2Anww E (A[ fig)nfkg (4.5.11)

holdsin [0; 1]. By applyingEq. (A53) again,we yield

X
B() = Gghi( ) + &GP *( 1)+ x(1) 8 2[01]: (4.5.12)
i2Anfkg

Finally, by combiningEq. (210 and Eq. (512 we obtain
ab( ) < aGR x(1)+ x(1) 8 2(u1] (4.5.13)
and, sincegx > 0, also
B() < GRx(1)+ x(1) 8 2(11] (4.5.14)

which provesthat constraint k remains(strictly) inactive within the next step of Algo-
rithm B from ; to ,. If notiesoccurat 1 only constraintj becomesactiveat ; and
2> 1 isvalid.

An approachfor resolvingtiesis presentedn [83]. Thereinthe solutionof an auxiliay (non-
parametric) quadratic program is proposed,which seemsto be inadequatefor the online
context. Thus, our implementationdoesnot coverthe situation whenties are present|and
no di culties havebeenobservedso far.

FigureZJillustratesan examplein whichlinea dependenceof the active constraintsoccurs:
the constraints are shifted while following the homotopy path (for simplicity, only one
constraintis thought to be parameterisedwhich causeslegeneracyt a certain homotopy
parameter ;. Then Theaem 1 can be utilised in order to resolvethis situation, i.e. to
nd an active constraintwhich can be removedfrom the working set. Afterwards, further
progressalongthe homotopy path can be made.
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(a) Two active constraints.

¥ 0Pt

RZ

(c) A formerly active constraint is re-
moved from the working set (cf. Theo-

remELT).

Figure 4.3: Exampleof linea dependenceof active constraints(bold) in parametric pro-
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(b) A third, parameterisedconstraint be-
comesactive which is linealy dependent
from the other ones.

X OPt

RZ

(d) The parameterised(and active) con-
straint is shifted further.

gramming(dark-grey: paameterisedconstraint, grey: feasibleset).

Implementation of Linear Dependence Handling

In order to ensurelinea independenceof the active constraintsand to detect possible
infeasibiliy, the modi ed KKT system(B.57) hasto be solved. Accading to Eq. (310

the implementedvariant of this KKT systemreads

0 ZAHEYE Z2Hpm
4 H,:Z,: Y@ H,:Y,: YOHM
HOZF HY Ye Hx

Idny
T Cx

Idp,

TO
C%
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wherep 2 R", g 2 R"A*"™x and Gj0 2 R" were split into two parts caresmpnding to
the free and xed variablesor the active constraints, respectively Becauseof its special
structure the computationale ort for its solutionis much lower than a narmal primal-dual
step determination: rst, we can exploit)Ehe equivalence

9Mq2R™: (G)r=  a(Cr)} () ZAG)E= (4.5.16)
i2A

which holds sincethe constraintto be addedto the working setis linealy dependentwith
the active constraintsif and only if it lies completelyin the rangespaceof Cr and is thus
orthogonalto all basisvectas of the null spaceof Cg. So, if ZE(GJQ)F 6 wecanstopthe
calculationas no linea dependenceoccurs. Otherwise,we proceedwherethe information
ZX(GP)r = further simpli es the solution. SinceZ 2p, Y 2pr and px becomezeroin this
case,we nally endup with the following formulaefor g

g = (T "YR(G)F: (4.5.17a)
& = (G))x CJua: (4.5.17h)

Compaed to the calculationof the primal-dual step direction via Eqs. (E2317), the cost
for a linea dependencecheckis almost negligible. Especially if a bound is addedto the
working set becausethen (GjO)F equalsa unity vecta and (Gjo)x is zero. However, note
that in the caseof degeneracyurther computationsare necessgy in order to perfam the
additional changeof the working set.

4.5.2 Infeasibility

The proposedonline active set strategy producesa sequenceof iterates which are primal
and dual feasiblefor consecutive(intermediate) quadratic programs. Thus, infeasibilily
can only occur if a bound or constraintis addedwhile following the homotogy path. In
this casethe augmentedactive constraints matrix has to be preventedfrom becoming
rank de cient anyway and we mentionedin Section. 5.1 that possibleinfeasibility can be
detectedsimultaneouslyas follows.

Recallthe situatiorﬂ whena constraintj 2 A shallbe addedto the working setA. If Ga
hasfull row rank, linea dependenceof GJO and the columnsof G, is equivalentto

X
9q2 R™: G = GG: (4.5.18)
i2A
TheaemE.1 shovs that we can resolvelinea dependenceif the vecta q in Eq. (219
has at least one positive component. If this in not the caseinfeasibilily is encountered
(cf. [I2)):

Theorem 4.3 (infeasibilit y detection): Let Ga be the current active constraintsmatrix
with full row rank and Gjo, j Z A, the constraintto be addedto the working setA. Assume
that there existsa vecta q 2 R"* asin Eq. (E&I8 which has no positive component.
Moreover,let x°Pt( 1);y¥°P'( 1) denotethe optimal primal-dual solution pair at the cur-
rent point ;1 2 R ¢ onthe homotopy path and assumethat no ties occurat ;.

Thenall parametricquadraticprogramson the homotoygy pathwith > 1 areinfeasible.

4Again, for clarity, we restrict the presentationto the casewhere boundsand constraints are not distin-
guished.
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Proof: Supposethat for some > ; an arbitrary vecta x 2 R" satis es the constraints
GX B() 8i2A: (4.5.19)

Multiplying eachsuchinequality by ¢ 0, addingthem togetherand using Eq. (218
leadsto

X
0 :
Gx Ggh( ): (4.5.20)
i2A
But on the other hand, asin the proof of TheaemE.2 (cp. Eqg. (£51I0), we canderive
abi() < B() 8 2 (1] (4.5.21)
i2A
whichimplies
Gx < B() 8 2 (1 (4.5.22)

Sincex was arbitrary, constraintj will be violatedfor all > ; aslong asall constraints
indexedby A remainful lled. Therefae, there existsno point satisfyingall constraints
indexedby A [ fjg no matter how the primal step directionis chosen.SinceTheaem [Z83
guaanteesthe existenceof a continuouscontinuationof x°Pt( ) all QPson the homotopy
path are infeasiblefor ( 1; 1+ ") and some" > 0. Finally the convexiy of P (cp. Theo-
rem[Z8) provesthat all QPson the homotopy path are infeasiblefor all > ;.

If the situation of TheaemE.3 occurs,the bounday of the set of feasibleparametersP is
reachedand we know that the current QP is infeasible:

Theorem 4.4 (infeasibility of the current QP): Let QP(wg) be the feasible, recently
solvedquadratic program and QP (wg®") the oneto be solvednext (both strictly convex
andno ties occur alongthe homotopy path betweenthem). Then QP(wg®") is infeasibleif
andonly if thereexistsa 1 2 [0; 1)lalong the homotopy from QP(wp) to QP(wg®")|to
which Theaem[E.3 applies.

Proof: All primal-dual pairs x°Pt( );y°P'( ) , 2 [0;1], alongthe homotopy path are
optimal and x°Pt( ) primal feasible hence.If thereisno 1 < 1 to which TheaemZ3 ap-
pliesit is possibleto follow the homotopy until the optimal solutionof QP(wg®"), implying
its feasibility.

The conversdirection follows directly from Theaem i3 as QP(wg®") denotesthe QP on
the homotopy pathat = 1.

If infeasibility of the currentquadraticprogramto be solvedis detectedvia TheaemE4 our
implementationof the online active set strategyjust stopsthe homotogy and waits for the
next QP which may be feasibleagain. In doing so, convexiy of P ensureghat a homotory
from the currently solvedintermediateQP to the new one exists(seeFigured.d).

Providedthat the MPC problemis well-posed,infeasibiliy shouldbe a rare exceptionand
mainly dueto measuremenerra's of the current processstate wy®". Oneinterpretation of
our infeasibility strategyis that it \trusts" the current processstate aslong asthe resulting
QP remainsfeasibleand usesa linea interpolation betweenwj®" and the old processstate
Wo otherwise. This strategy seemsadequatefor practical setups,whereuncertaintiesare
inherentlypresent,evenif more elaborated schemesnay be conceivable.
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Figure 4.4: Infeasibiliy handlingof the proposedonline active set strategy

4.6 Computational Complexity

4.6.1 Runtime Complexity

We already know from Section[3l that the e ort for one iteration of a primal active
set methad is O(n?) if matrix updates are used. In this sectionwe want to investigate
the runtime complexiy of the proposedonline active set strategy in mare detail. Since
thearetical valuesfor the number of requirediterations for nding the solution are not
available|only an (almosttrivial) exponentialworst-caseboundis knovn|w e restrict the
presentationto the complexiy of onesingleiteration.

Algarithm B starts with calculatingthe vectas wp, g and bvia Egs. (1) which
obviouslyrequiresO(n) oating-p oint operationgl.

Afterwards, the primal-dual step directions x°Pt and y°P! haveto be determined.This
is doneby usingEgs. (311 while exploitingcommonsubexpessiongherein. Clealy, as
Ng;nx nandna;n, n, this calculationrequiresO(n?) oating-p oints operations;the
exactvalueis givenin TableE

Third, the maximum homotoyy step length ax hasto be obtained from Eqgs. (EZII0).
This makesthe calculationof the matrix-vecta product G? x°P' andtherefae nn; oating
point operationsnecessgﬁ; besidessomenegligibleO(n) operations.

Swithin this sectiona oating-p oint operation is de ned as one multiplication/division together with an
addition. Thus, calculatingthe dot product a% of two vectas a; b 2 R" requiresn oating-p oint operations,
for example.

8In the very rst iteration also G hasto be calculated, which is zero if the initialisation homotopy
is used.
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Steps(4), (5) and (7) onlyinvolvea xed number of somevecta operationsand thus have
O(n) complexiy.

Finally, step(6) involvesone of the four possiblematrix updates(i.e. adding/removingof a
bound/constraintto/from the working set). Their computationale ort caneasilybe derived
from their detaileddescriptionin SectionZd.3:3(seealso[3Y]) andis summaisedin TablelZT,
assumingthat a Givensplanerotation can be perfamed by meansof three oating-p oint
operations(cf. pagedd). Note that alsothe e ort for calculatingthe product Z E(GJ-O)F, as
decrited in Sectiond.5.], is includedinto the complexiy of addinga bound/constraint. If
this product equalszerolinea independencemust be ensured:via Egs. (5.1 and some
O(n) operationsa bound or a constraintis determinedwhich hasto be removedfrom the
working set.

Table4.1: Runtime complexiy of the online active set strategy (generalcase).

Task: | Complexiy:
Determinationof step direction 5n2  2nna  8nny + 2n% + 4nany + 4nZ + O(n)
Determinationof step length nn, + O(n)
Removinga bound from working set 3n2+nna  5nnx + 2n%  nanx + 2n% + O(n)
Removinga constraintfrom working set’ || 2n?2  inna  5nnx + £n% + nanx + 3n% + O(n)
Adding a bound to working set 502 4nna  10nnx + 3n% + 4nany + 5n% + O(n)
Adding a constraintto working set 5n2 4nnp  10nnx + 4nany + 5n>2( + O(n)
Ensuringlinea independence nna + %ni + O(n)
Remainingcalculations O(n)

As summaisedin TableEd, the computationale ort of all stepsof the online active set
strategy dependsnot only on the number of variablesbut alsoon how many variablesare
xed (ng) and how many constraintsare active (na). One completeiteration consistsof
determinationof the step direction, determinationof the step length, one changeof the
working set and the remainingcalculations.In order to simplify the analysiswe de ne the
averagee ort for oneworking set changeas

n : n . .
X \removing a bound" + ﬁ \removing a constraint"

2n
Nx (461)

n n \adding a bound" + n \adding a constraint";

sinceit seemsreasonablgo assumethat it is more likely that a boundis to be removed
from the working setif more variablesare xed and soon.

Furthermae, we can considerthe casewhenlinea independenceoccurs. Then alsolinea
independencehasto be ensuredby removinga boundor a constraintfrom the working set.
The averagee ort for perfaming this additionalworking set changeis chosenas

n : n : .
X \removing a bound" + A \removing a constraint"; (4.6.2)
Nx + Na Nx + Na

providedthat nx + na > 0.

63



Chapter 4. An Online Active Set Strategy for Mo del Predictive Control

As a last simpli cation, we assumethat the number of constraintsequalsthe number of
variables,i.e. m = n, and expessboth the number of xed variablesand the number of
active constraintsas a fraction of somearbitrary but xed n 2 N:

o

ef

nx = n x; x2][01]; (4.6.3a)
" n Al A2[01 x]: (4.6.3b)

(o}
Il

Na

Tablel2 shawvs the runtime complexiy of the onlineactive set strategyfor di erent values
of x and . FigureE&1 illustratesthe runtime complexiy of one completeiteration

(no linea dependenceoccurs) of the online active set strategywith respect to the number

of xed variablesand active constraintsas de ned in Egs. (£63).

We can seethat the most computationale ort per iteration is neededif no variablesare

xed andno constraintsare active, whichnormally is the caseif the systemto be controlled
is nea a steady-state. If the number of xed variablesor active constraintsincreaseghe

runtime complexiyy decreasesigni cantly. This e ect is particularly striking if the number

of free variables becomessmall which also justi es the distinction between bounds and

constraints.

Another expected observationis that computationale ort increasesf linea dependence
occurs. Therefae, it isreasonabldo take the e ort of onecompleteiteration in whichlinea

dependecenccursandno variablesare xed andno constraintsare active,i.e. 13:5n2+ O(n)

oating-p oint operations,asan uppper bound for the computationalburdenof oneiteration

(evenif linea dependencecannotoccurin this situation). Although this bound neednot to

be strict becauseof the averagingprocessof Egs. (6.0 and (63 andthe assumption
m = n, it shouldbe a su ciently accurateguessfor practical purposesif n is \large".

Especiallyif m  n onecan construct situationswherethe computationale ort might be

higher, but it is important to note that the e ort per iteration grows quadratically in the

number of variablesaslongasm 2 O(n).

Table 4.2: Runtime complexiy of the online active set strategy modulo O(n) for several
special cases.

Complexiy:

Task: Nx=0 | Nx=3, | Nnx=0, | nx=3, | nx=n,| nx=0

NA=0 | na=0 | na=% | na=F | na=0 | na=n

Determinationof step direction || 5:0n? 2:8n2 4:6n? 2:8n2 1:0n? 5:0n?
Determinationof step length 1:0n? 1:0n? 0:7n? 0:7n? 1:0n? 0:0n2
Removinga bound 2:5n2 1:1n? 3:1n? 1:6n? 0:0n2 5:5n2
Removinga constraint’ 2:5n2 1:1n? 2:4n2 1:1n? 0:0n2 2:9n2
Adding a bound 5:0n? 2:2n2 3:8n2 1:5n? 0:0n2 2:5n2
Adding a constraint 5:0n2 2:2n2 3:7n? 1:3n? 0:0n2 1:0n?

Ensuringlinea independence 0:0n? 0:0n? 0:4n? 0:4n? 0:0n? 1:5n?

One completeiteration

(no linea dependenceoccurs)
One completeiteration

(linear dependenceoccurs)

11:0n2 5:8n2 8:8n2 4:8n2 2:0n2 7:7n?

[13:5n%] | 7:1n? 11:8n? | 6:6n? 2:0n? 11:9n2
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runtime complexiy

2n?
1-

Figure 4.5: Runtime complexiy of one completeiteration (no linea dependenceoccurs)
of the online active set strategy with resgect to the number of xed variablesand active

constraints.

Re nements for Determing the Step Direction

As mentionedin Sectiond.3.2 the computationale ort for calculatingthe primal-dualstep
direction can be reducedif the currently active boundsby or constraints'boundsba (see
Eq. (B33) are independentfrom wo. We omit the resulting equivalentsto Eqs. 311
and just summaise their runtime complexitiesin Table &3 If both active boundsand
constraintsdo not depend on wg savingsbetween20% and 100% are thearetically possible
(compaed with the standad appoachfor determingthe step direction).

Table 4.3: Runtime complexiy for calculatingthe primal-dual step direction of the online

active set strategy

Task:

Complexiy:

Determinationof step direction

5n2  2nna  8nnx + 2n% + 4nanx + 4n% + O(n)

Determinationof step direction
(boundsindependent)

5n2  2nna  9nny + 2nZ + 3nany + 4n% + O(n)

Determinationof step direction
(boundsand constraintsindependent)

4n?  3nna  7nny + 3n3 + 4nany + 3nZ + O(n)

"The computational e ort depends on which constraint is removed. For simplicity, it is assumedthat

the Z2th row is removedfrom Ga.
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4.6.2 Memory Requirements

The proposedonline active set strategy was implementedunder the assumptionthat all
matricesare dense i.e. that most entriesare non-zero. This is justi ed if the matricesof
the open-loop optimal control problem are denseor a long prediction harizon ny, lis
used(leadingto denseentriesAiB, 0 j np 1, in Eq. ZZ2Z09). Thus, all matrices
H, A T, Q andR are stared completelyin two-dimensionakrrays. For eachmatrix the
maximal possibly required memay is allocated and, for simplicity, no advantageof the
symmetryof H and the triangular shape of T and R is taken. TableE4 lists all memay
requirementsof our implementationof the online active set strategy and shavs that the
storage complexiy is O(n?), providedthat the number of constraintsgrows linealy in the
number of variables.

Table4.4: Memay requirementsof our implementationof the online active set strategy

Data: H A T Q R others total
Memay: n2 nm n? n? n? O(n) 4n?+ nm + O(n)

4.7 Further Re nements and Extensions

In this sectionwe useformulation (2319 insteadof (E30) for notational convenience.

4.7.1 Step Length Determination

Most of the runtime for determingthe primal-dual step length is spent for calculatingthe
maximalprimal steplengthvia Eq. (@1.103. This calculationeventakesa signi cant part
of the whole computationale ort for one iteration if the number of constraintsbecomes
large (compaed with the number of optimisationvariables). Therefae, we presentan idea
of how the determinationof the maximalprimal step length can be simpli ed.

We assumawithout lossof generaliy that every(nontrivial) constrainthasEuclidearlength
one, which can easilybe achievedby normalisingeveryconstraint,i.e.

G . B()

Gx B() () GICX Gl

8i2fl:::;mg: (4.7.1)

At everyprimal solution alongthe homotogy path, 2 [0; 1], and for everyconstraintwe
de ne a feasibiliy measure

() € GXP() B() 0 8i2fL:;mg: (4.7.2)
Then the following holds:

Lemma 4.3 (feasibility measure): Let a normalisedconstrainth& B(), 1 i
m, with caresmpnding feasibiliy measureas de ned in Eq. (L3 be given. Let this
constraint be inactive at some xed ; 2 [0; 1] alongthe homotogy path, i.e. "i( 1) > 0,
andk Xx( 1)k, +j b < "i( 1). Then the constraintremainsinactivefor all 2 [ 1;1].
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Proof: The triangle and Cauchy-Scharz's inequality imply:
GY x®'( 1)+  x(1) h(©O)+ b

= "i()+ G2 x(1) b
(1) G x(1) b

"i( 1) GY x(1) +] hj
"i( 1) GY, x(1) ,*+]j bj
= "i( 1) X(1) ,*+] hbj

"i( 1) X(1) ,+] bj
> "i() i) = 0

which shawvs that the constraintremainsinactivefor all 2 [ 1;1].

This lemma shavs that an inactive constraint whosefeasibility measureis greater than
the Euclideannorm of the current primal step direction plus the absolute value of the
constraint vecta step direction cannot becomea blocking constraint. Hence,staring the
feasibility measureof the inactiveconstraintsmay partly avoidthe calculationof the product
Gl0 X( 1) in Algarithm B Since calculatingthe feasibiliy measures'i( 1), i 2 I( 1),
exactlyafter eachhomotoyy stepwould outweighthe possiblebene t, only cheaplyavailable
lower bounds”; "i( ) 8 2 [0;1] are held:

(1) for 1= 0dene

w € 0) 8i21(0); (4.7.3)

(2) whendetermingthe maximumprimal homotoyy steplength ax consideronly inac-
tive constraintsl i m with

k x( )k, +j bBj 245 (4.7.4)

(3) afterwards update”; asfollows:

(
w  def "i( 1t max) K x( )k, +j bj ", (4.7 5a)

Y (1t max) X( 1) 2+j bj else

Steps(2) and (3) are repeated until the solution of current QP ( 1 = 1) is found, and
also afterwards for solving the following QPs. Note that step (3) requiresonly O(m)
additional oating-p oint operationsas all necessg quantitiesare alreadycalculatedin the
secondstep. Therefae considerable&eomputationalsavingscanbe expectedif the quadratic
program compisesmany constraintsthat are \far" from becomingactive. In our rst test
example(seeChapterH) we observedcomputationalsavingsup to 10%.

4.7.2 Extension to Sequential Quadratic Programming

Now we brie y presenta possibiliy to extendthe proposedonline active set strategy to
nonlinea MPC. Asmentionedin SectionZ, in this casea nonlinea program(NLP) instead
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of a QP hasto be solved. This canbe donee ciently via sequentiajuadraticprogramming
(SQP) methads (see,e.g., [65] for a detaileddescription). Thereina sequenceof QPs is
solvedat eachsamplinginstant which di er not only in the gradient and the constraint
vecta, but alsoin the (positivede nite) Hessiarmatrix (approximation) andthe constraint
matrix.

Let us assumehat we havesolvedone of theseQPs:

QP: min  2xHx + x% (4.7.6a)
X2 RN
sit: Gx b; (4.7.6b)

with optimal primal-dualsolutionpair x°P'; y°Pt and carrepondingoptimal working set A
and now want to solvethe next one:
QpPnew : nz1iRn FXH newy + xGnew (4.7.7a)
X n
st: GMWx prew (4.7.7b)
By subtractingthe KKT optimality conditions(ZZ313 of both QPsit is easyto seethat
xOPt: yOPt “together with the sameoptimal working set AH, is alsothe optimal solution

of the transfamed QP:
!

oP : min %X(H newy + xG (4.7.8a)
X2 RN
st- Ghewy B: (4.7.8b)
with
9 def g (H™ H) ¥ OPt 4 (G™V  G) yOpt : (4.7.93)
d:ef b+ (Gnew G) ¥ OPt - (4.7.9b)

!
Thus, it is possibleto start from the optimal solution x°P';y%t of QP and stat a
homotopy towards the solution of QP"™Y. In doing so the following steps have to be
perfamed:

1. Calculatematrix factorisationsof newHessiammatrix H "W and newconstraintmatrix
G"®W for optimal working setA;

2. Calculate transfamed gradient vecta g and transfamed constraint vecta D via

Egs. ©Z9);

!
3. Pefam a homotopy from QP to QP™" (i.e. from g to g"®" and from b to bW,
respectively) starting from the last optimal solution x°Pt; yoPt |

This approach makes it possibleto warm start alsothe QPs within a SQP algaithm and
evenallows to interrupt solving the optimal control problem during one SQP iteration.
Implementingthis extensionof our online active set strategy will be an issuefor future
work.

8Provided that G hasfull row rank.
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Chapter 5

Numerical Tests:
Chain of Spring Connected Masses

Now we want to analysehe perfamanceof the proposedonlineactive set strategyby solv-
ing two di erent problems:the rst oneis a challengingbenchmak problem|comp rising
240 variablesand 1191 bounds/constraints|where a chain of sging connectedmassess
regulatedbackinto its steady-stateafter a strongexcitation. Second seeChapterg, we aim
at controlling a real-world Dieselengineavailablefor experimentsat the Institute for Design
and Control of MechatronicalSystemsn Linz, Austria. The resultsare alsocompaed with
thoseof a standad active set QP solverand the explicit (0 ine) appoach.

5.1 Model Description and Problem Formulation

Our rst test exampleis a variant of a recently publishedbenchmak problem [8t], [84].
Sinceit was deeplyanalysedn [[86] we outline only its main characteristics.

We considera chain consistingof nine ballswhich are connectedby eight Hookian springs
in betweenandtwo further Hookianspringsat eachend. Eachballi, 1 i 9, isthought
to be concentratedin a singlepoint x' 2 R3 with massm 2 R (in kg). All sgingsare
identical havingspring constantd 2 R. o (in N/m) andrestlengthL 2 R.g (in m). One
end of the chainis xed at a certain point xg 2 R®, whereasthe free end of the sping at
the other end of the chain is freely movable(its position is denotedby x'° 2 R3). The
whole chain of sgring connectedmassess situated in a homogeneougravitational eld
decrited by its accelerationvecta g 2 R3 (in m/s?).

Without loss of generaliy, we let x° %' and obtain for all timest 2 T %' [0;1) the
following (second-ader) ODE systemfrom Newton's laws of motion:

F iii+1 (t) Fi L (t) g

-~ 8i2fl;:::;90; (5.1.1a)

x'(t) =

it + def L i+ i
where FH* () = d 1 D XK xH)  x'(t) (5.1.1b)

denotesthe force acting on the ith massdueto the spring betweenthe ith andthe (i + 1)th
mass(pointing from x' to x'*1). Via standad techniquesthis systemcan be refamulated
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asa rst-order, i.e. involvingonly rst time derivatives,ODE systemby introducing the
velacity vectas xi(t) 2 R3, 1 i 9, of the massess additional di erential variables.
The chainis controlled by manipulatingthe three velccity components of the free end at
point x10, leadingto three additional di erential equations

x0t) = u(t); (5.1.1c)
whereu: T ! RS3 denotesthe processinputs asdescrited in SectionZ1 By de ning
x(t) ExL0)%x )% x0() X0 ()% x10()° °2 R (5.1.2)

system(EL) becomesa nonlinea model of the form:
x(t) = f x(t);u(t) 8t2T: (5.1.3)

In order to obtain a linea processmodel we lineaise system(B 1) at a steady-state. It
can be shavn that all velccities of the massesand the controllableend of the chainx ! (t),
1 i 10 mustbezeroat a steady-state.Thus, if we x the position of the free end of
the chain,i.e. x20(t) %" xeng 2 R® for all t 2 T, the uniquestablesteady-statg(®; ) 2 R®
satisfying

= f % (5.1.4)

is easilyobtained. Afterwards, the systemmatricesof the linea processmodel (Egs. (221))
are de nied as

R;
A def @

d=ef@ R;

and B @17(0

G0 (5.1.5)

aswell as
C = Idsy: (516)

Figure5.1: Chainof spring connectedmassest its steady-statefor Xeng = (5;0;0). (The
controllablefree end of the chainis symiolisedby a black ball.)
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5.1. Mo del Description and Problem Formulation

The (quadratic) objective function is chosensuch that deviationsfrom the steady-state

(R; ) are penalised: L

Ids 0 1
gt .
min 1 ”
x(t);u(t) 2
to

x(t) R ° B x(t) R +u(t)°@ A u(t) dt

Ids | —{ZR—}
Id dif
fe— -

def

(5.1.7)
with ; ;2 Rso. ThischoiceimpliesQ 2 S°] andR 2 S3, a terminal penalty weight

matrix is not used(i.e. P ¥ 2 S®7).

Finally we imposeboundson the processinputs
1 u((t) 1 8i2fl1;23g (5.1.8)

and thus yieldingthe benchmak examplefrom [[8€]. Additionally, we placea vertical wall
(parallel to the secondcoordinate axis) nea to the chain at steady-state(®; ); and we
choose xeng suchthat the chain at this steady-stateis hanging parallel to this wall (see
FigureBd). Then we introducelower boundson the secondcomponent of the position of
all balls,i.e. wai xi2 foralll i 9 inorderto preventthe chainfrom hitting the wall
while it is controlled. In the notation of De nition 23, theseconstraintstogetherwith the
bounds(BE19 read

0 1 0 1 0 1
wall eg
wlaII e Eox(t) + u(t); (5.1.9)
Ids
Id3
|—{z—} | {z } | —{z—}
! =M aor

def def

with the secondcoordinate vecta e, 2 RS.

The continuous-timeopen-laop optimal control problem (1), (&1, (B.1.9) is discre-
tisedinto a nite optimisation problem, seeSectionlZ3, by dividing the prediction horizon
of length t, ©' 165 into Np L7 80 equidistant control intervals. The dimensionsof the
resulting parametric quadratic program (after the condensingoroceduredescrited in Sec-
tion 23 are givenin TableBE:d Somenumericalproperties of this parametric quadratic
programare summaisedin Tableb:3 the usednumericalvaluesof all the abovementioned

model constantsare listed in TableB1l

Table5.1: Numericalconstantsfor the chainexample.

Constant: m d L g Xend wall
Value: 0:03| 1 | 0:0333|(0;0; 9:81) | (5;0;0) | 50 2 0:02 0:2
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Table5.2: Problemdimensiongafter condensing)f the chain example.

Quantity: | Dimension:
Dimensionof initial valuevecta 57
Number of variables 240
Number of bounds 480
Number of constraints 711

Table5.3: Matrix propertiesof the chainexample.

Property: | Value:
Condition number of Hessianmatrix H 1:01 10*
Maximum eigenvalueof Hessianmatrix H 526 10°
Minimum eigenvalueof Hessianmatrix H 520 10 4
Number of nonzeroelementsof Hessianmatrix H 57600(1000 %)
Condition number of constraintmatrix G 9:57 10°
Numericalrank! of constraint matrix G 79
Number of nonzeroelementsof constraintmatrix G 84368(49:6 %)

5.2 Numerical Results

We simulate in a closed-lop manner integrating the nonlinea ODE systemwith high
accuracyin order to obtain the movementsof the chain. Sincewe control the chain using
a linea model, feedbackcontrol is mandatay evenin this nominalsetup (i.e. without any
noiseor measuremengrras). Starting at the steady-statecarespndingto Xeng = (5;0;0),
a strongperturbationis exertedto the chainby movingthe freeendwith a constantvelacity
( 1:5;1:0; 1.0) m=sfor 3 seconds.Then the MPC controllertakesoverandtries to return
the chaininto its original steady-statewhile not hitting againstthe wall. (Note that during
the initial pertubation phasethe optimiseris alreadyrunning but the calculatedoptimal
control action is not given back to the chain.) This scenaio is simulatedon the time
harizon [0; 20]s using a constant samplingtime of def 0:2s, i.e. ©' 1 in Eq. ZZ23.
It was tested with four di erent methads: rst, we solveevery QP exactly using three
alternative methods:

gpsol with cold start, i.e. initialisation with an empty working set and the origin as
an intial guessfor the solution,

gpsol with warm start, i.e. the solverisinitialisedwith the solutionand carespmpnding
working set of the previousQP (but without providing any matrix factorisations),

online active set strategyas presentedin Chapterd wherewe follow everyhomotopy
path until the exactsolutionis reached.

!Number of (normalised) singula valuesgreaterthan 10 °; see[4§] for a discussionon determing the
rank of a matrix numerically
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5.2. Numerical Results

Secondwe allow for an inexactQP solution by usingthe

online active set strategy and limiting the maximumnumber of working set changes
(as descriled in SectionZ2) to 10.

gpsol is a very common primal active set QP solver basedon the null spacemethad
(see Section@BID). It is written for QPs with dense matrices and solvesan auxiliary
LP for nding an initial feasiblepoint during phasel. A descriptionof the FORTRAN
implementationis givenin [62].

Figurelb.2 illustrates the optimally controlled chain at four particular time instants. The
number of boundsand constraints'boundsactive at the solution of eachQP aswell asthe
Euclideannarm of the QP solutionvecta are depictedin Figure[e3 for the caseof exact
QP solution.

The number of QP iterations, i.e. the number of working set recalculationsin the caseof
the onlineactive set strategy and runtimeﬂ per samplinginstant are reported in Table[e.4
and illustrated in Figuredh.q andB.g, respectively

POTB WM P 5 LW

N
(a) At beginningof control phase(t = 35s) (b) Early momentin control phase(t = 4s)
3 3
2 2
1 1
0 0
N N
1 1
2 2
3 3
4 85{42101 X 4 85{42101 X
5 0 1 2 3 4 5 0 1 2 3 4
y y
(c) Softly touching the wall (t = 5:459) (d) Almost at steady-state(t = 20s)

Figure5.2: Optimally controlledclosed-l@p trajectory of the chainwith exactQP solution.
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(@) Number of active bounds (grey) and active
constraints' bounds (black).

(b) Euclideannorm of the QP solution vectar.

Figure 5.3: Properties of the exact QP solution for the optimally closed-lop controlled
chain.

Table5.4: Compaison of standad QP solverand online active set strategieswith respect
to runtimesand number of iterations.

Method: Maximum Average | Maximumno. | Averageno.
’ runtime [ms] | runtime [ms] | of iterations | of iterations

gpsol (cold start) 1006.8 2235 60 10.4

gpsol (warm start) 969.6 140.9 71 7.1

online active set strategy

(fully converged) 74.8 18.5 14 3.3

online active set strategy

(at most 10 iterations) >1.6 16.8 10 31

The solution, and thus alsothe optimal objectivefunction value, are identical when using
gpsol or the fully convergedonline active set strategy Moreover,all QPs are feasibleand
sothe optimal solutionis feasiblein thesecasestoo. However,note that tiny infeasibilities
of the \real" chainwith respect to constraintviolationsmay occur betweentwo sampling
instancesbecausethe maodel is not exact. A qualitatively di erent form of infeasibilities
canoccurif the real-timevariant of the online active set strategyis used: if the homotopy
towards the new QP solution is stopped prematurelythe solution of the intermediate QP
might be suboptimal and infeasiblewith resgect to the current QP that onewantsto solve.

2All simulations were perfarmed on an Intel Pentium 4 processo with 2.53GHz (single core), 512kB
L2 cacheand 1 GB main memay using gcc 3.3.4 with compiler ag -O3. The runtimes are obtained from
multiple measurementsith the linux-speci ¢ function gettimeofday() and shouldbe accuratewithin some
hundred microseconds.
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5.2. Numerical Results

In the chaintest scenaio thesepossibleinfeasibilitiesare restrictedto constraintviolations
becauseall boundsare equally xed for all samplingtimes and their ful Iment is thus not
a ected by the current position along the homotogy path. Table B3 compaes the MPC
objectivefunction overthe whole simulationharizon [0; 20]s aswell asthe maximal\real"
constraintviolation of the solutionsof the exactonline active set strategy (or gpsol ) and
the inexactone.

80 .
707 :
[72] 1 0
c ! c
.0 60y | o .
© | ©
g% T
= ' =
u— 40f : — 1
(@] ' (@]
’g 30 : _@
€ ooy II! ]
5 20 ‘ %
c ! c
10f i
O : L L L L L
0 5 10 15 20 10 15 20
time [9] time [g]
(a) Standad QP solver(grey: cold start, black: (b) Online active set strategy (grey: fully con-
warm start). verged, black: real-time variant performing at
most 10 iterations).
Figure5.4: Number of iterations per samplinginstant for chainexample.
1500

runtime [msg]
5
8
runtime [mg]

500f

1‘0 1‘5 20 10 15 20

0
time [g] time [
(a) Standad QP solver(grey: cold start, black: (b) Online active set strategy (grey: fully con-
warm start). verged, black: real-time variant performing at

most 10 iterations).

Figure5.5: Runtimesper samplinginstant for chain example.
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Table 5.5: Optimal MPC objective function value and maximum\real” infeasibiliy (con-
straint violation).

Optimal objective| Maximum\real"

Method: . L .
function value | constraintviolations

Exact QP solution 1747.07 0.0019

InexactQP solution usingthe
online active set strategy 1746.72 0.0056
(at most 10 iterations)

Decreasing the Sampling Time to = 0:1s

As the runtimes of the online active set strategy are well below 0:2s, we can reducethe
samplingtimeto = 0:1s, i.e. % 2 in Eq. 29, in orderto reactfasterto inaccuracies
due to the mentionedmodel-plant mismatch (note that the discretisationof the optimal
control problemis not changed).We alsosimulatethis slightly di erent setupusinggpsol ,
evenif this solveris not able to solvethe occuring optimal control problemswithin this
shater time period.

We do not illustrate the optimisedtrajectories and the properties of the QP solutionssince
they are very simila to that depictedin the Figuresib.d and3 The number of QP it-
erationsand runtimes per samplinginstant are summaisedin Table 58 and illustrated in
Figuredh.d andBd, respectively Again, the MPC objectivefunction overthe whole simu-
lation harizon [0; 20]s (divided by two) as well as the maximal\real" constraintviolation
of the solutionsof the exactonline active set strategy (or gpsol ) and the inexactone are
reported in Tableb4

200 — : : 20 .
%) : %) ‘
c . c '
.© 1501 ' 2 15¢ ‘
— ' 1
@ : o l
2 ! 2 l
45 100f 5 100
o 1 — :
8 : g :
S 50 ! 1 5r
‘ S
el A ‘ L | |
% 5 10 15 20 % 5 10 15 20
time [9] time [9]
(a) Standad QP solver(grey: cold start, black: (b) Online active set strategy (grey: fully con-
warm start). verged, black: real-time variant performing at

most 6 iterations).

Figure5.6: Number of iterations per samplinginstant for chainexample( = 0:1s).
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time [g]

(a) Standad QP solver(grey: cold start, black:

warm start).

20 0

. 10 15 20
time [g]

(b) Online active set strategy (grey: fully con-

verged, black: real-time variant performing at
most 6 iterations).

Figure5.7: Runtimesper samplinginstant for chainexample( = 0:15s).

Table5.6: Compaison of standad QP solverand online active set strategieswith respect
to runtimesand number of iterations( = 0:1s).

Method: Ma_ximum Ayerage Ma>.(imur.n no. Avgraggno.
runtime [ms] | runtime [ms] | of iterations | of iterations

gpsol (cold start) 1005.9 204.1 62 10.1

gpsol (warm start) 1487.1 89.2 166 34

online active set strategy 57.8 122 11 19

(fully converged)

online active set strategy

(at most 6 iterations) 35.5 13.7 6 2:3

Table 5.7: Optimal MPC objective function value and maximum \real" infeasibility (i.e.

constraintviolation) for = 0:1s.

Optimal objective

Maximum \real"

Method: . e
function value | constraintviolations

Exact QP solution 1658.25 0.0041

Inexact QP solution usingthe

online active set strategy 1686.26 0.0108

(at most 6 iterations)
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5.3 Summary of the Results

The most obvious observationis that the runtimes of the fully convergedonline active
set strategy are signi cantlymo re than an order of magnitude| shater than that of
gpsol, evenif gpsol is perfaming warm starts. This is true for both the averageand the
mare crucial maximumruntime. Thus, gpsol is far from being able to control the chain
within the given samplingtimes, whereasthe proposed online active set strategy meets
the real-time requirementswith eas@. Appaently, this resultsfrom a smallernumber of
QP iterations (the e ort for one iteration of gpsol and the online active set strategy is
compaable), but this fact cannot fully explainthe enamousdi erence.

Someother things are alsoimportant: rst, the primal solution of the precedingQP often
is not a feasibleinitial value for the next QP, making a phasel necessa. Within the
initial sevensecondsof the simulationwith = 0:2s( = 0:1s), up to 13 (6) phasel LP
iterationﬂ were necessy if the warm start feature of gpsol is used. Instead,a cold start
requiresa phasel quite rarely (at most one LP iteration) sincethe origin is often a primal
feasiblepoimﬁ. Second,our online active set strategy can use both matrix factorisations
from the previousQP, whereaggpsol hasto calculatethem from scratchevenif an initial
guessfor the active set is provided via the warm start feature. Finally the runtimes of
gpsol may su er from someoverheadbecauseit alsohandlesinde nite QPs. But even
if a special positive de nite QP variant of gpsol which is also able to maintain matrix
factorisationswould have beenused,a considerablespeedupof the proposedonline active
setmethaod canbe expected: a factor of 3-7 compaed with cold starting and 2-4 compaed
with warm starting seemso be realisticaccading to the data givenin Tablesh.4 andBE.8

Besideghe compaisonwith gpsol , the resultsof the onlineactivesetstrategy(andits real-
time variant) are interestingfor themselves:rst, reducingthe samplingtimes alsoreduces
both the maximum and the averagenumber of requiredactive set changesper sampling
instant. Thisis a usefulproperty from an applicationpoint of viewbecauseshater sampling
times normally resultin a improvedcontroller perfaomance. Second,a proper restriction of
the number of working set changesusing the real-time variant leadsto a further decrease
of the maximumruntime (the averageruntime is only slightly a ected becausehe working
setchangesare more or lesspostponedto later samplinginstants) without becomingmuch
suboptimal or infeasible.For = 0:2s the optimal objectivefunction valueof the real-time
variant is evena little bit better dueto a slight increaseof infeasibilities;for = 0:1sthe
\real" infeasibilitiesremain very small and only 1.7% loss of optimality in the objective
function value is oberserved. Of course,a thearetical perfamance guaantee cannot be
givensofar.

Finally, we remak that this test problemwith a state-spacedimensionof 57 and far more
than 3240 104 possibleactive setsis by no meanstractable with the explicit approach
(as presentedin SectionlZ3.9).

3The reported runtimes do not include the e ort for calculating the current gradient vectar g(wo) and
constraint vectar b(wp) sinceit is almost negligiblecompaed with the remaining online computations.

4Using = 0:1s, warm started gpsol performs 70 LP iterations and afterwards 166 QP iterations at
t = 4:2s. Sincethis simulation phaseis quite crucial, this outlier could resultin a heavycrashinto the wall.

SUnfortunately, besidesthe number of LP iterations, gpsol providesno possibility to obtain the runtime
requiredfor phasel.
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Chapter 6

Numerical Tests:
Real-World Diesel Engine

6.1 Model Description and Problem Formulation

In this secondest examplewe aim at controlling a real-world directinjectionturbo chaged
Dieselengineon a dynamicaltestbenchat the Institute for Designand Control of Mecha-
tronical Systemsof the JohannesKepler Universiy in Linz (Austria), seeFigurelgl

In order to minimisethe emissionswe control the so-calledairpath of the Dieselengine,
which is depictedin FigurelgZ freshair streamsthrough the compgesso into the intake
manifold insidethe engine. From there it ows into the cylinderswherethe fuel is burnt
for producingthe enginetorque. Afterwards, the exhaustgasesespecially NOy and soot)
streaminto the exhaustmanifold from wherethey can ow in two directions: one pat
of them drivesa variable geometryturbochager VGT which spinsup the compesso by
meansof a commonshaft, and thus stronglyin uencesthe pressurdn the intake manifold;
the other pat o wsthrough the exhaustgasrecirculation(EGR) valve and mixeswith the
freshair. This alreadyburnt gasacts as an inert gas during combustionwhich lowers the
peak temperature and hencereducesthe NOy emissions.In modern Dieselenginesboth
the openingof the EGRvalveaswell asthe angleof the inlet guidevanesof the VGT can
be controlled.

Modelling of the combustionprocessnaturally leadsto partial di erential equations where
temporal aswell asspatialderivativesare presentandeachexplosiomeeddso be simulated|
a nealy impossibletask for today's computing capaciy. Another possibiliy is the usage
of so-calledmean value maodels (without any spatial e ects) leadingto nonlinea ODE
systems A meanvalue model for Dieselenginescan be found in [57], a simila one for
gasolineenginess develogd in Appendix[

In order to emplgy our online active set strategy we needa linea processmodel, which
could be derivedby lineaising the nonlinea ODE systemfrom a meanvalue model at a
certain point. Instead, we follow the ideaspresentedin [6€], [674] and directly uselinea
identi cation techniques(see[bg] for an introduction). To this end a discrete-timelinea
state-spacemodel (ZZ109-([Z-Z 104 is obtained from real measurementsy tting the
input to the output data (via a least-squees-like prediction erra approach.

79



Chapter 6. Numerical Tests: Real-World Diesel Engine

Figure6.1: Dieselenginetestbenchat the Universiy in Linz.

T 1
/l intake manifold

cylinders

EGR OO0 OO0

valve
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I |8 _[
Comﬂeﬁg] ./ VGT

Figure6.2: Schematicdiagramof the Dieselengineairpath (inspiredby [52])

exhaustmanifold
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Sincethe Dieselengine'sdynamicsare highly nonlinea it is not possibleto derivea single
linea model for the whole operating range (i.e. enginespeedfrom 800 to 4500rpm and
fuel injection between 0 and 50 mg/ stroke). Therefae the operating rangeis empirically
dividedinto twelve small operating areasand a linea processmodel is identi ed for each
of them. The subsequentalidation of all modelswith real enginedata shaved that the
prediction quality of most of the modelsfor the Dieselenginein Linz is good.

Instead of minimising the emissionsdirectly, two processoutputs|jnamely the massair
ow (MAF) throughthe compesso and the manifold absolutepressure(MAP) insidethe
intake manifold|a re regulatedto certainsetpoints. Thesesetpoints dependon the current
operating point and are optimised(o ine) with respect to emissionsfuel consumptionand
torque.

Thus, for eachof the twelve operating areaswe obtain an identi ed model of the following
form:

Xke1 = Aldxy + E9%P + By 8k 2 N[ fog; (6.1.1a)
Vi = Cl9% 8k2 N[ fOg; (6.1.1b)

whereAld 2 R2 2 Bid 2 R2 2 Cid 2 R2 2. The inputs uy 2 R? descrile the position
of the EGR and the VGT (normalisedto lie between 0 and 100), the outputs y, 2 R?
contain the valuesof MAF and MAP. Moreover,the systemstatesdepend (via the matrix
Eid 2 RZ 2) onthe currentenginespeedand the amountof injectedfuel. They are treated
as known parameterswhich are xed overthe whole prediction harizon; for eachtime step
we summaise them in the vecta xf 2 R2.

Furthermae, the mismatch

def | meas

Xg = Vi y« 8k2 N[ fOg (6.1.2)

between the measuredand the predicted outputs is estimatedvia a linea Kalman lter
(see[6y] for details) andis alsoassumedo be constantoverthe whole prediction harizon.

Thesemaodi cations leadto the following augmentedinea processmodel:

0 1 0 W cig 10 1 0_,1
Xk+1 A E' Xk B'
@xP,, A=@ 1d, A@xPA+@ Ay 8k2NJ[f0g; (6.1.3a)
Xi+1 Id% ):EE
Xk
y, = Ci Id, @xP A 8k2 N[ fOg: (6.1.3b)
X

Finally, two further augmentationsof the state spaceare necessg: rst, we introduce
the desiredsetpoint, or referenceyvaluesof MAF and MAP as additional parameters,say
Xk 2 R? (= yrer in Eq. (ZZ8)), asthey are constantfor one optimisationproblembut may
vary from one QP to the next. Second,we do not want to control EGRand VGT directly
but their ratesof change ux 2 R? (ux = ug 1+ Uy), instead. Thus, we end up with
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an ODE systeinconsistingof ten states:

: . 10 1 0 .
Xk+1 Ald Eld Bld Xk Bld
XP4q Id> Xk
Xpa & = [oP xp G+ Uy ; (6.1.4a)
rk+1 Id> er
u Id u Id
k g2 Uk 1 2
Xk
| X
yk = C Id> x¢ 8k2 N[ fOg: (6.1.4b)
k
Uk

After this transfamation it is possibleto introduceboundson the valuesaswell ason the
rate of changeof EGRand VGTH:

10 Uk 3:53 8k2 N[ fog: (6.1.5a)
100 _
0 Uk o 8k 2 N[ fOg: (6.1.5b)

The lower/upper boundson the rate of the EGRvalvehavedi erent absolutevaluesbhecause
it hasto work againsta spring for opening.
The objectivefunctiorﬁ is chosenas:

1k0‘|><’]p 1

. 2 1
,o.min o W Ye)® T 5 Ok Ve + u® T ukdt;  (6.16)
o kb K=o | —{z—} | —{z—}
Uk “ko+np = = R
Ukg i “k0+np 1 def def
wherex; denotesx;, xP, x® or x! for allko i ko+ np. The prediction horizon of

tp ©f 4s lengthis dividedinto np g equidistantcontrol intervals,eachof 50ms length,

and a tenth onewith length 3.55s.

The dimensionsof the resulting parametric quadratic program (after the condensingpro-
ceduredescrited in SectionZZ3J) for the fth operating area are givenin Tablelel Some
numericalproperties of this parametric quadratic program are summaisedin Table[E2

Table6.1: Problemdimensiongafter condensing)f the Dieselengineexample.

Quantity: | Dimension:
Dimensionof initial valuevecta 10
Number of variables 20
Number of bounds 40
Number of constraints 40

1The given numericalvaluesare valid for the fth operating area (enginespeed: 2100-2500pm, injected
fuel: 0-30mg/ stroke).

2When compaing the input and output weights R and Q, note that the inputs are almost two orders of
magnitude smallerthan the outputs.
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6.2. Numerical Results

Table 6.2: Matrix propertiesof the Dieselengineexample, fth operating area.

Property: | Value:

Condition number of Hessianmatrix H 4:64 10%
Maximum eigenvalueof Hessianmatrix H 1:00 10°
Minimum eigenvalueof Hessianmatrix H 2:16 10 °
Number of nonzeroelementsof Hessianmatrix H 400 (1000 %)
Condition number of constraintmatrix G 1:32 10!
Numericalrank of constraintmatrix G 20
Number of nonzeroelementsof constraintmatrix G 110(27:5%)

6.2 Numerical Results

We perfam closed-l@p simulationsusingthe linea model of the fth operatingarea(engine
speed: 2100-2500pm, injected fuel: 0-30mg/ stroke). The enginespeedas well as the
amountof injectedfuelis kept constantlat 2300rpm and 15mg/ stroke, resgectively|and
the controllershalltrack two step changesof the setpoints for MAF and MAP. The Diesel
engineis simulatedby integratingthe linea model and adding(uniformly distributed) white
nois@ to the measuredi.e. simulated)MAF and MAP values;a linea Kalman lter isused
to estimatethe true values.Moreover,white noiseis alsoaddedto the valuesof speedand
injectedfuel asthey haveto be measuredn practice. Finally, the samplingtime is chosen
to be = 50ms. This setupcaresmpndsto that descriked in [[66] and wasimplementedin
a Matlab/Simulink environment[59] (seeFigureled).

As in the chain benchmak problem (cp. ChapterB), the simulationswere conductedby
using:

gpsol with cold and warm starts,

onlineactive set strategywith exact QP solutionand with the number of working set
changedimited to 10 and 5, respectively

OASES > 1 )

w_0

]

Figure6.3: Implementationof the online active set strategy (OASEScompiledinto a Mat-
lab/Simulink block.

3We usedthe samenoise sequencefor all simulations by starting the random number generata with a
xed seedvalue.
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Chapter 6. Numerical Tests: Real-World Diesel Engine

Moreover,the explicit approach (as descriked in SectionZ:33) was emplged. In doing so,
we encounteredli culties dueto exponentialcomplexiy of the requiredprecalculation:the
Matlab Hybrid Toolbox [[6] failed to precalculatean explicit controller for control horizon
lenghts greater than two (although this most likely resultedfrom an internal erra); for
np = 5it stoppedafter severaminutesand more than 15000regionsfoundwith the message
\unexpecteddegeneracyondition”. Sincea control harizon of lengthn, = 10 could lead
to about 2:6 107 critical regionE, 15000shouldbe a stronglyunderestimatingower bound
on their actual number. So, if we make the conservativeassumptionthat everyregionis
descrited by 10 inequalities,even15000critical regionswould require15000 10° 8byte
12Mbyte of memay (about 150Mbyte for all 12 linea models!). And if a linea seach
throughall regionsis perfamedonline(asimplementedn the Hybrid Toolbox), half of them
needto be checled on averagewhich requiresabout one million oating-p oint operations.
Ona Pentium IV processo this may take somehundredmicrosecondsa valuethat is easily
achievedusingour online active set strategy aswe will seesoon.

Therefae, we compae the results of the online computation (using a control horizon of
10 intervals) with an explicit controller basedon only one control interval. This controller
compises25 critical regionsand was usedin [6€], [67] to perfam real-world closed-l@p
experimentson the above-mentionedieselengine.

We simulatedon the time harizon [0; 30]s with a constant samplingtime of def 50ms,
starting from a steady-state. The referencevaluesusedfor MAF and MAP are depicted
in Figurel&4, together with the optimised outputs. The optimised inputs are shovn in
FigureB3 Sincethe output trajectaries as well as the inputs are nealy identical for all
online QP solutions(i.e. alsofor the inexactQP solution usingthe real-time variant of the
online active set strategy), only the valuesfor exact online QP solution and that of the
explicit approach (with one control interval) are compaed. The number of boundsand
constraints'boundsactive at the solution of eachQP aswell asthe Euclideannarm of the
QP solutionvecta are depictedin Figurelg.8 for the caseof exactonline QP solution.

The number of QP iterations, i.e. the number of working set recalculationsn caseof the
online active set strategy and runtimeﬁ per samplinginstant are illustrated in Figuresb.4
andB8 respectively The maximumnumber of iterations, the maximumruntime and the
MPC obijective function evaluatedover the whole simulation harizon are summaised in
Table[&3 In caseof the real-time vaiant (limited to ve working set changes)of the
onlineactive set strategythe valueof the EGRopeningbecomesnfeasibleat onesampling
instant ( 1:8 at 10.1s) and s therefae clippedto 0.

Finally, we want to mentionthat both matrix factorisationsremainedvery accurateduring
the whole simulation: their maximum deviation from their exact counterpats lay below

41t this casethe maximum number of di erent optimal active set/critical regionscan be calculated via
, ! !
%p)@ 2k 2np 2] K .an
j=0 k=0 K Ik
using a simple combinatcrial argument.

SAll simulations were perfarmed on an Intel Pentium 4 processo with 2.53GHz (single core), 512kB
L2 cacheand 1 GB main memay using gcc 3.3.4 with compiler ag -O3. The runtimes are obtained from
a seriesof measurementswith the linux-speci ¢ function gettimeofday() and should be accurate in the
order of 10-50 microseconds.
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6.2. Numerical Results

machineprecision. Furthermae, as expected for this small-scaleexample,computational
overheadfor the alternative step length determination(as descriled in Section.Z1) out-
weighedthe bene t.

EGR

MAF [mg/ stroke]

760
12801
g 1260¢
o
=
o 1240
=
12201
N N
1200¢
®% s 10 15 20 25 30 0 5 10 15 20 25 30
time [9] time [g]
(@) Optimised MAF values (grey: explicit ap- (b) Optimised MAP values (grey: explicit ap-
proach, black: exact online QP solution, dashed: proach, black: exactonline QP solution, dashed:
referencevalue). referencevalue).

Figure6.4: Optimisedoutputs for Dieselengineexample.

|_

@]

>

20O 5 l‘O ) 1‘5 2‘0 2‘5 30
time [9]

(@) Optimised EGR values (grey: explicit ap- (b) Optimised VGT values (grey: explicit ap-
proach, black: exact online QP solution, dashed: proach, black: exactonline QP solution, dashed:
lower bound). upper bound).

Figure 6.5: Optimal controlsfor Dieselengineexample.
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Figure 6.6: Properties of the exact online QP solution for the optimally closed-l@p con-
trolled Dieselengine.

Table 6.3: Compaison of an standad online QP solver,the online active set strategies
as well as the explicit approach with respect to runtimes, number of iterations and MPC
objectivefunction value.

Maximum | Maximum no. | Optimal objective

Method: runtime [ms] | of iterations function value
gpsol (cold start) 3.03 21 4851.7
gpsol (warm start) 2.67 21 4851.7

online active set strategy

(fully converged) 0.41 22 4851.7
online active set strategy

(at most 10 iterations) 0.22 10 4851.8
online actlv.e set §trategy 0.13 5 48512
(at most 5 iterations)

explicit approach <0.01 { 6497.3
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(a) Standad online QP solver(grey: cold start, (b) Online active set strategy (grey: fully con-
black: warm start). verged, black: real-time variant performing at
most 5 iterations).
Figure 6.7: Number of iterations per samplinginstant for Dieselengineexample.
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(a) Standad online QP solver(grey: cold start, (b) Online active set strategy (grey: fully con-
black: warm start). verged, black: real-time variant performing at

most 5 iterations).

Figure 6.8: Runtimesper samplinginstant for Dieselengineexample.

6.3 Summary of the Simulation Results

The most important observationfrom a practical point of view is that referencetracking
perfamanceis considerablyimprovedby usingmany control intervals. The period required
for reachinga new MAF/MAP setpoint after a step changeis greatly reduced,from about
three to belov one second,as can be seenin FigureE4 Sincenot only absolutebounds
but also limits on the rate of changeof the manipulatedvariablesare consideredwithin
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Chapter 6. Numerical Tests: Real-World Diesel Engine

the optimisation problem, it shouldbe possibleto directly realisetheseimprovementsin
practice. The necessy optimal control problem formulation with an increasechumber of
degreesof freedomecalls for a fast online QP solver, instead of an explicit approach, as
arguedabove.

Compaing the resultsof gpsol and our online active set strategy showvs that the number
of iterations for exact QP solution are quite simila. This might be due to the fact that

the constraints'boundsexhibit a very specialstructure|EGR andVGT are arti cial states,
introducedin order to deal with their (discretised)derivatives. This probably leadsto a
specialgeometryof the partition of the set of feasibleparametersand thus to similar steps
of the conventionalprimal method and the proposedonline active set strategy The signi -

cantly higherruntime of gpsol at the rst setpoint changeis not yet fully understad. This
e ect only occursif many constraintsbecomeactive. It alsopersistswhenthe dimension
of the QP is varied. At the secondsetpoint change,whenonly boundsbecomeactive, an
equalnumber of iterations alsoleadsto compaable runtimes.

Neverthelessthis exampleclari es the advantagesof the real-time variant of the online
active set strategy: almost without becomingsuboptimal or infeasible,it was possible
to reducethe number of working set changesby a factor of four (compaed with exact
QP solution)! This result justi es the conjecturethat it might not be necessy to solve
every QP exactly if the initial state is disturbed by measurementnoise. Reducingthe
computationalruntime in this way makes online QP solution de nitely viablefor this kind

of problem, evenif cheap(and henceslon) controller CPUsare used.

6.4 Real-World Experiments

The simulationresultspresentedsofar encourageur aimto perfam closed-l@p real-world

experimentsat the testbenchin Linz. Preliminay tests, usinga simpli ed implementation
of our onlineactive set strategywhich could handleboundson the inputs only, werealready
perfamed in sgring 2006. For this purpose,the C++ sourcecode was integratedinto a
Matlab/Simulink controller and implementedon the rapid prototyping hardware system
dSPACE [24], which directly controlsthe engine. The dSPACE hardware is about ve to

ten times slowver than a commonPentium IV processa thus, whenlooking at the runtimes
in SectionB.2, one shouldincreasethem in mind by one order of magnitude(which means
at most 4ms for the online active set strategy).

Another questionis how to switch the controller between di erent models for di erent

operating areas. On the one hand, it is possibileto let severalQP solversbe running at
the sametime; on the other hand, if these switchesdo not occur too frequently a cold
start in the new operating area seemdeasible.A third possibility is to apply the extension
of our online active set strategy to problemswith varying QP matrices (as descriked in

Section 2. This might make sensedue to the expectation that the active set will

be similar acrossneightouring operating areas. The most appropriate appoach for this
applicationwould be to allow the QP matricesto changein everyiteration, which directly
leadsto nonlinea MPC.
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Chapter 7

Conclusions and Outlo ok

In this Diplom thesis, we presentedthe main conceptsof model predictive control and
shaved that the resulting optimal control problemscan be formulated as quadratic pro-
grams, providedthat the objectivefunction is quadraticand the ODE model aswell asthe
constraintsare linea. It was shovn that thesequadratic programsdepend linealy on the
current state of the controlled process;the special structure of theseparametric quadratic
programswas analysedand someof their important properties were presented. We also
outlined severalexisting methads for solvingthesequadratic programs, namelyactive set
methads and the so-calledexplicit approach.

After thesethearetical prepaations a new online active set strategy for the fast solution
of (parametric) quadratic programming problemsarising in model predictive control was
develogd. This strategy builds on ideasfrom parametric optimisation and fully exploits
the knowledgeof the solutionof the previousquadraticprogrammakingthe assumptiorthat
the active setdoesnot changemuchfrom onequadraticprogramto the next. Furthermae,
we shaved how this strategycan be modi ed to make it suitablefor real-timeapplications.
We addressedrariousimportant ingredientsfor an e cient implementationof our methaod
and alsodescriled proceduresfor dealingwith degenerated)Ps. Complexiy issuesand a
possbileextensionof the proposedmethad to nonlinea model predictive control problems
were discussed.

Finally, we investigatedthe perfamanceof our C++ implementationof the online active
set strategy with two test examples:a challengingmedium-scalebenchmak problemand
a small-scalgroblemfor controlling a real-world Dieselenginein a closed-lop manner. In
these examples,our strategy turned out to be signi cantly faster than a standad active
set QP solver(evenif the conventionalwarm start techniqueis used)while overcomingthe
prohibitive limitations of the explicit approachto MPC optimisation.

Future work will go into three maja directions: (i) improvementsand perfamancetests
of the current implementation, (i) extensionsof the online active set strategy to other
problemclassesand (iii) its applicationto real-world control problems.

() First, somere nements of the current implementationfrom a thearetical as well as
from a software engineericapoint of vieware still conceivable For example,it might
be possibleto incaporate so-calledong stepswhenan activeconstraintsswapswithin
onesamplingperiod from its upper to its lower bounds(or vice versa),which causes
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(ii)

(iif)

twolunnecessary from hindsight|active set changeswithin our current algaithm.
Alsoa thearetical boundon the suboptimality if the homotoyy is stopped prematurely
would be desirable. Furthermae, a mare extensivebenchmaking will show if our
strategyis alsosuperia to other QP solverswritten with MPC applicationsin mind.

Secondwe want to adaptthe proposedonline active set method in order to make it
suitablefor sequentialquadratic programmingfor solvingnonlinea model predictive
control problems. The mainideasof this extensiorwerealreadydescriledin Chapterd
and will be implementedsoon. Moreover,extendingthe applicability of our methad
to (not strictly) convexquadraticor linea programsseemdo be possibleand useful.

Finally, the simulationsof the Dieselenginepresentedn Chapterfd will form the basis
of closed-lop real-world experiments,scheduledor the endof the yea 2006. Besides
perfamanceimprovementslike reductionof NOy emissionsor scot formation, these
tests will hopefully give further insight into practical requirementsfor making model
predictive control a viable control strategy for fast applicationsin the millisecond
range.
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Appendix A

Mathematical Basics

In order to easethe presentationsome basic de nitions and results are collectedin this
appendix,insteadof givingthem wherethey rst occur. Sinceit is assumedhat the reader
is familiar with all conceptsthey are stated without further explanation.

De nition A.1 (convex set): A setX R" iscalledconvexi

X1+ (1 Ixp 2 X (A.2)

for all x1; x, 2 X andall 2 [0;1] R.

De nition A.2 (convex function): A real-valuedfunction f : D R" I R is called
convexi D isaconvexsetand

f(xa+ (@ )x2) f(x)+ (@ )f (x2) (A.2)
for all x1; x, 2 D andall 2 [0;1] R.

De nition A.3 (polyhedron): A setX R" iscalledpolyhedroni thereexista matrix
A2 R™ "andavectad b2 R™ suchthat

X = x2R" Ax b : (A.3)

De nition A.4 (range space and null space of a matrix): Let amatrix A 2 R™ " be
given.
(i) Its rangespace(or image im A is the vecta spacespannedby the columnsof A,
i.e.
def

im A Ax x2R" R™: (A.4)

(i) Its null space(or kerne) kerA is de ned as

kerA £ x2R" Ax= (A.5)
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Theorem A.1 (Cholesky decomposition): For everymatrix A 2 S" thereexistsa unique
upper triangula matrix R 2 R" " with positive diagonalentriessuchthat

A = RR: (A.6)

de

Matrix R, or its transposedL tef RO is called Choleskyfactor of A.

Proof: Canbe foundin [46, p.143].

Theorem A.2 (QR factorisation): Letamatrix A2 R™ " with m n be given. Then
the following holds:

(i) There existan orthonarmal matrix V 2 R™ ™ and an upper triangula matrix U 2
R"™ " suchthat

A=YV ; (A.7)

(@ii) If A hasfull row rank there exist an orthonarmal matrix V 2 R™ " and an upper
triangula matrix U 2 R" " with positive diagonalentriessuchthat

A = VU: (A.8)

This factorisation is unique.

Proof: Canbe foundin [46, p.223{230].

De nition A.5 (condition number of a matrix): For everymatrix A2 R™ ", A6 ,
the condition number condA is de ned as

condA " Ay A

) 5 (A.9)

ThereinAY denotesthe so-calledpseudoinversef A whichcoincidewith A 1 if the matrix
A isinvertible (see[4], p.170{172]).

De nition A.6 (big-O notation): For everyscala functionf : N! N we de ne
Of) € g:N! N 9; ;np2N:gn) f(n)+ 8n ng (A.10)

asthe set of all integer functionswhich are asymptoticallydominatedby f .
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Appendix B

Implementation Overview

Now we give a conciseoverviewabout the practical implementationof the proposedonline

active set strategy: the software module OASESIt is thought to be a guidelinefor actu-

ally setting up and solving sequence®f strictly convexquadratic programswith OASES
thearetical issuesand numericalresultswere addressedn the main part of this thesis.

B.1 Software Module OASES

The software module OASESs written in an object-aiented mannerin C++ and comes
alongwith the fully commentefl les listedin TableBZl Besidessomestandads libraries
no further software packagesare required. Cae of the moduleis the QProblemclasswhich
is able to store, processand solvestrictly quadratic programsusing the online active set
strategy;it makesuseof severalauxiliay classes.

TableB.1: Complete le list of the software module OASES

File name: H Description:

QProblemclassfor usingthe online active set strategy
for strictly convexQPs

QProblemSubjectTo classfor managingworking sets
of constraintsor variablesof a QProblem
QProblemBoundsclassfor managingworking sets

of variablesof a QProblem
QProblemBoundsclassfor managingworking sets

of constraintsof a QProblem

QProblemIndexlist  classfor managingindex lists
OASEMdexlist.cpp/hp  p/ipp of constraintsor boundswithin the
QProblemSubjectTo class

OASE®R)Problem.cpp/hpp/i pp

OASESubjectTo.cpp/hp p/ipp

OASESBounds.cpp/hpp/i pp

OASE®onstraints.cpp/  hpp/i pp

OASEYJtils.cpp/hpp someutilities for working with the QProblemclass

OASES$nain.cpp main function samplefor testing the QProblemclass

LAll commentscan be interpreted by the documentation systemdoxygen [80)].
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B.2 OASE$ a Nutshell

The userinteracts with the OASE®odule solelyvia the QProblemclass. So, for setting
up a quadratic program an instanceof the QProblemclasshasto be created. This canbe
doneby di erent constructas, e.g. the following

QProblem::QProbl em( const double* H, const double* A, const double* g,
const double* Ib, const double* ub,
const double* IbA, const double* ubA,
int nV, int nC);

which takesthe (positive de nite) Hessianmatrix H the constraint matrix A the gradient
vecta g, the lower and upper bound vectas Ib and ub, the lower and upper constraints'
boundvectas IbA and ubA the number of variablesnV and the number of constraintsnC
of the quadratic programto be solved. All thesedata must be stored in arrays of type
double (matricesstored row-wisein an one-dimensionaarray). A further constructa for
QPs whitout constraintsexists, as well as constructas for readingthe data directly from
ASCI les.

After setting up the rst quadraticprogramit hasto be initialised via the function:

int QProblem::init(  int& nWSR,bool objFLAG, double& cputime );

It initialisesall internal data structuresand solvesthe quadratic program using the tech-
niquesdescriled in Section4 The argument nWSRpeci es the maximum number of
working set recalculationgto be perfamed during the initial homotogy (on output in con-
tains the number of working set recalculationsactually perfamed). objFLAG indicatesif
alsothe optimal objectivefunction valueshallbe calculated;cputime contains(on output)
the CPU time requiredfor the wholeinitialisation. The functionsinit()  returnsa status
codewhichindicatesif the initialisation was successful Alternatively the function solve()

providesan interfacefor solvingthe quadraticprogramwith a di erent solver(e.g. gpsol ).

If not only a singlequadratic program but a whole sequencef QPs shall be solved|as it
is the usualsituation for a MPC problem|the next QP can be solvedusingthe function:

int QProblem::hotstar t( const double* g_new,
const double* Ib_new, const double* ub_new,
const double* IbA _new, const double* ubA_new,
int& NnWSR,bool objFLAG, double& cputime );

The next QP is speci ed by passingits gradientvecta g_new its lower and upper bound
vectas Ib _newand ub_newaswell aslower and upper constraints'bound vectas IbA _new
and ubA.new It is solvedby meansof the online active set strategy usingat most nWSR
working set recalculations.objFLAG indicatesif alsothe optimal objectivefunction value
shall be calculated;cputime contains(on output) the CPU time requiredfor nWSRteps
alongthe homotopy path. The function hotstart()  returnsa statuscode whichindicates,
e.g., if the optimal solution of the next QP could be found within the given number of
working set recalculationsor if an errar occured. Again, special (overloaded)variants for
QPs whitout constraintsor for readingthe data of the next QP directly from ASCI les
exist.
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Besidesthis main functionality, severalfunctionsfor obtaining status information are im-
plemented. Amongthem

double* QProblem::getPri maSoluti on ( )
double* QProblem::getDualSoluti on ( )
double QProblem::getObj Vd( )

for getting the primal-dual solution pair x°P'; y°P' and the optimal objective function
valueor

bool QProblem:isinit ial is ed( )
bool QProblem::isSolv ed( )
bool QProblem::isinfe asible( )

for askingif the current QP was initialised, solvedor found to be infeasible. Moreover,
severaloutput functions are available.

We concludeby presentinga very simpleexamplefor illustrating the handlingof the OASES
module:

#include "OASES_QProblenmpp"

int main( )

{
/I data of first QP

double H[2*2] ={ 1.0, 0.0, 0.0, 05 };
double A[1*2] ={ 1.0, 1.0 };
double g[2] ={ 10, 1.0 }
double Ib[2] ={ 0.5, -2.0 }
double ub[2] ={ 50, 20 }
double IbA[1] ={ -1.0 };

double ubA[1l] ={ 2.0 };

/I data of second QP

double g_new[2] ={ 1.0, 1.0 }
double Ib_new[2] ={ 0.0, -1.0 };
double ub_new[2] ={ 5.0, -0.5 };
double IbA new[l] ={ -2.0 };
double ubA new[1] ={ 1.0 };

/I setting up first QP
QProblem testExample( H,A,g,lb,ub,IbA, ubA 2,1 );

/I solve first QP

double cputime;

int NWSR= 10;

testExample.init  ( nWSR,true,cputi me);

/I solve second QP
nWSR= 10;

testExample.hots tar t( g_new,Ib_new,ub_newl bA new,ubA new, nWSR,true,cputi me);

return O;
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Appendix C

Fast Nonlinear Mo del Predictive
Control of Gasoline Engines

As an examplefor NMPC applicationswe refrint a publication recently presentedat the
IEEE International Conferenceon Control Applications2006in Munich [[37].

Not included in this online version (for copyright reasons)!

C.1 Intro duction

C.2 Mo del Description

C.3 NMPC Problem Formulation
C.4 Algorithm

C.5 Simulation Results

C.6 Conclusions and Future Work

Acknowledgements
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