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Zusammenfassung

Eine Echtzeit-Strategie zur Bestimmung aktiver Nebenbedingungen
f•ur das schnelle L•osen parametrischer quadratischer Programme

mit Anwendungen auf die pr•adiktive Moto rsteuerung

BeinahejederAlgorithmus zur modellpr•adiktivenRegelungberuht auf der Echtzeit-L•osung
konvexerquadratischerProgramme. In dieserDiplomarbeit wird eine ma�geschneiderte
Echtzeit-StrategiezurBestimmungaktiverNebenbedingungenentwickelt, umparametrische
quadratischeProbleme{ wie sieim Rahmendermodellpr•adiktivenRegelungauftreten{ zu
l•osen. UnsereStrategienutzt die Kenntnisder L•osungdesvorhergehendenquadratischen
Problemsunter der Annahmeaus,dasssichdie Mengeder aktivenNebenbedingungenvon
einemquadratischenProgrammzum n•achstennicht wesentlich•andert. Au�erdem stellen
wir eineVariante vor, bei der die Rechenzeitzum Zwecke realerEchtzeit-Anwendungenbe-
grenzt wird. Eine e�ziente Implementierungder vorgeschlagenenEchtzeit-Strategiewird
detailliert beschrieben und ihre Leistungsf•ahigkeit anhandvon zwei anspruchsvollenTest-
beispielenaufgezeigt.Einesdavonwurdezur SteuerungeinesrealenDieselmotors entwor-
fen, bei der jedesder quadratischenProgrammeinnerhalb weniger Millisekundengel•ost
werden muss. In den vorgestelltenBeispielenzeigt sich, dassunsereEchtzeit-Strategie
etwa eineGr•o�enordnungschnelleralsherk•ommliche(Warmstart-)Algorithmen zur L•osung
quadratischerProgrammeist.

Schl•usselw•orter: modellpr•adiktive Regelung,parametrischequadratischeProgrammierung,
Echtzeit-Strategiezur Bestimmungaktiver Nebenbedingungen,Echtzeit-Optimierung,Mo-
torsteuerung

AMS-Klassi�kationen:90C20,34H05,93B52,62P30
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Abstract

Nearly all algorithms for model predictivecontrol (MPC) rely on solvingconvexquadratic
programsin real-time. In this thesis,wedevelopa speciallytailoredonlineactivesetstrategy
for the fast solutionof parametricquadraticprogramsarisingin MPC. Our strategyexploits
solution information of the previousquadratic program (QP) under the assumptionthat
the set of activeconstraintsdoesnot changemuchfrom oneQP to the next. Furthermore,
we presenta modi�cation wherethe CPU time is limited in order to make it suitablefor
strict real-timeapplications.An e�cient implementationof the proposedonlineactive set
strategy is described in detail and its performanceis demonstratedwith two challenging
test examples.One of thesewas designedfor controlling a real-world Dieselenginewith
samplingtimes of a few milliseconds.In theseexamples,our strategy turns out to be an
order of magnitudefaster than a standard active set QP solver(with warmstarts).

Key words: model predictivecontrol, parametric quadraticprogramming,online active set
strategy, real-timeoptimisation,enginecontrol

AMS subjectclassi�cations:90C20,34H05,93B52,62P30
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Notation

Symbols

Scalar Sets

A working set
A(x) indexset of active constraintsat point x

F working set of free variables
F(x) indexset of free variablesat point x

I working set complement
I (x) indexset of inactiveconstraintsat point x

N set of natural numbers(greater than 0)

R �eld of real numbers
R� 0 set of nonnegativereal numbers
R> 0 set of positivereal numbers

T time horizon of the controlledprocess
Tp prediction horizon

X working set of �xed variables
X(x) indexset of �xed variablesat point x

Vector and Matrix Sets

CRA critical regionof an optimal active set A

D domainof a real function

F feasibleset of a quadraticprogram

P set of feasibleparametersof a parametric quadraticprogram

Rn set of real n-dimensionalvectors

Rm� n set of real m � n-dimensionalmatrices

Sn set of real symmetricn � n-matrices
Sn

� 0 set of real symmetricpositivesemi-de�nite n � n-matrices
Sn

� 0 set of real symmetricpositivede�nite n � n-matrices
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Notation

Mo del Predictive Control

A systemdynamicsmatrix (associated with processstates)

B systemdynamicsmatrix (associated with processinputs)
c constraint function

C output matrix (associated with processstates)

� samplingtime

D output matrix (associated with processinputs)
f systemdynamicsODE right handside
g algebraic equationsfunction of a DAE system

l constraint vector

M constraintmatrix (associated with processoutputs)

N constraintmatrix (associated with processinputs)
ng number of algebraic equationsof a DAE system
np length of discrete-timeprediction horizon
np number of processparameters
nu number of processinputs
nx number of di�erential processstates
ny number of processoutputs
nz number of algebraic processstates

 (�) Lagrangeterm of objectivefunction
� (�) Mayer term of objectivefunction

p vector of processparameters

P terminal penalty weight matrix
Q objectivefunction matrix (associated with processoutputs)

R objectivefunction matrix (associated with processinputs)

t time
tstart start time of the controlledprocess
tend end time of the controlledprocess
tp length of prediction horizon

u(t) vector of processinputs
x(t) vector of di�erential processstates
y(t) vector of processoutputs
x(t) vector of algebraic processstates

Quadratic Programs

b constraint vector
bB lower bound vector

bB upper bound vector
bC lower constraints'bound vector
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Notation

bC upper constraints'bound vector

C active constraintsmatrix
g gradientvector

G constraintmatrix

H Hessianmatrix
m number of constraints
n number of variables

nA number of constraintswithin working set A
nEC number of equality constraints
nF number of free variableswithin working set F
nX number of �xed variableswithin working set X
nZ dimensionof restrictednull spaceof active constraintsmatrix
w0 initial valueparametervector

x(k) kth iterate of the primal vector

y(k) kth iterate of the dual vector

xopt primal solutionvector

yopt dual solution vector

Algorithm

~� indicatesa homotopy from oneQP to the next
Q orthonormal factor of TQ factorisation of CF

R upper triangular Choleskyfactor of projectedHessianmatrix
� homotopy parameter

� max maximumprimal-dualstepsizewithin current critical region

T reverselower triangular factor of TQ factorisation of CF

Y matrix containingorthonormal basisof the rangespaceof CF

Z matrix containingorthonormal basisof the null spaceof CF

Test Examples

� weighting factor for di�erence of end position of the free endof the chain
� weighting factor for balls' velocities
 weighting factor for control action

d spring constant
g gravitationalacceleration

L spring's rest length
m massof a singleball

� wall wall's position alongthe secondcoordinate axis
xend desiredend position of the free endof the chain
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Notation

Gasoline Engine

� actuatedthrottle angle
A th openingarea of the throttle

C EGRspeci�c constant
cpair speci�c heat at pressureof freshair insidethe intake manifold
cpegr speci�c heat at exhaustgaspressure
cvim speci�c heat at volumeof intake manifold
� v volumetrice�ciency

� comb combustione�ciency
 speci�c heat ratio

� enginetorque

H v calori�c heat of the fuel

k throttle speci�c constant
kegr EGRspeci�c constant
mair massof freshair insidethe intake manifold
megr massof exhaustsinsidethe intake manifold

N enginerotational speed

NOx NOx emissions
pamb ambientpressure
pexh exhaustgaspressure
pim intake manifold pressure
� air density

R gasconstant

Rim gasconstantof intake manifold
� exh time lag of exhaustgas
Tegr temperatureof exhaustgas

Tim temperatureinsidethe intake manifold
uegr openingangleof EGRvalve
Ve enginedisplacement

Vim volumeof intake manifold
we masso w rate from intake manifold to cylinders

wegr masso w rate through EGRvalve
wfuel fuel masso w rate
wth masso w rate through throttle

Others

1 in�nit y

8 for all

9 there exist
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Notation

9! there existsexactlyone

; empty set
� M power set of set M

� endof proof
� endof theorem, lemma,corollary or de�nition

Mathematical Expressions

Constants

�

real matrix of appropriate dimensionswith all elementszero
� real columnvector of appropriate dimensionwith all componentsone
ei i -th columnof the identity matrix with appropriate dimension

Oi;j (�) Givensplanerotation in the (i; j ) coordinate plane

Idn n-dimensionalidentity matrix
Id r

n n-dimensionalreverseidentity matrix
e baseof the natural logarithm
� twice the valueof the smallestpositiveroot of the real cosinefunction

Others

[�; �] closedinterval of real numbers
(�; �) open interval of real numbersor two-dimensionalrow vector

� def= � de�nes the symbol on the left to equalthe expressionon the right
� =

def
� de�nes the symbol on the right to equalthe expressionon the left

�  � assignsthe valueof the variable on the left to the variable on the right

M 0 transposedof matrix or vector M

M � 1 inverseof regular matrix M

M y pseudoinverseof matrix M
j�j absolutevalueof a real number or cardinality of a set

k�k2 Euclideannorm of a matrix or vector

im M rangespacespannedby the columnsof matrix M

M
1
2 square root of matrix M , i.e. M

1
2 0M

1
2 = M

condM condition number of matrix M
_f (t) �rst derivativeof function f with respect to time t
•f (t) secondderivativeof function f with respect to time t
f

�
�
X restriction of function f to set X

O(�) big-O notation
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Abbreviations and Acronyms

Besidescommon expressionsand SI units the following abbreviationsand acronymsare
used:

BDF backward di�erentiation formulae

CO2 carbon dioxide

CPU central processingunit

DAE di�erential algebraic equation

EGR exhaustgasrecirculation

HC hydrocarbon

i� if and only if

IVP initial valueproblem

LICQ linear independenceconstraintquali�cation

LP linear program

KKT Karush-Kuhn-Tucker

MAF massair o w

MAP manifoldabsolutepressure

MPC model predictivecontrol

MUSCOD multiple shooting code for direct optimal control (software package)

NLP nonlinear program

NMPC nonlinear model predictivecontrol

NOx nitrogenoxide

OASES onlineactive set strategy(software module)

ODE ordinary di�erential equation

QP quadraticprogram

RHC recedinghorizon control
rpm revolutionsper minute

SQP sequentialquadraticprogramming

s: t : subjectto

VGT variablegeometryturbocharger

VVT variablevalvetiming
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Chapter 1

Intro duction

Model predictivecontrol (MPC) is an advancedcontrol strategywhich allows to determine
inputsof an arbitrary processthat optimisethe forecastedprocessbehaviour.Theseinputs,
or control actions, are calculatedrepeatedlyusing a mathematicalprocessmodel for the
prediction. In doing so, the fast and reliablesolution of convexquadratic programming
problemsin real-timebecomesa crucialingredientof nearly all algorithms for both linear and
nonlinear model predictivecontrol. The successof linear MPC|where just one quadratic
program(QP) needsto be solvedat eachsamplinginstant|can evenbe attributed to the
fact that highly e�cient and reliablemethods for QP solutionhaveexistedfor decades,and
that their computationtimes are much smallerthan the requiredsamplingtimes in typical
applications. On the other hand, in nonlinear MPC algorithms, quadratic programsoften
ariseassubproblemsduring the iterative nonlinear solutionprocedure,sothat not only one,
but severalQPs needto be solvedat eachsamplinginstant. In most MPC algorithms, the
arising QPs are treated by well-testedand e�cient standard methods from optimisation.

The requiredsamplingtime, i.e. the time di�erence betweentwo re-optimisations,strongly
dependson the velocity of the processdynamics. In practice, it normally varies between
somesecondsor minutes, e.g. if huge distillation columnsor polyethyleneplants are to
be controlled (cf. [25], [26] or [19]), and a few milliseconds. Very short samplingtimes
especiallyariseif MPC is appliedto fast mechanicalsystems,e.g. in the very recent�eld of
optimal control applicationsin the automotivearea. Therein,enginecontrol is a particular
challengedue to very fast and nonlinear dynamics,making samplingtimes in the order of
millisecondsnecessary.
Whensamplingtimes becomeso short that the computationtimes for QP solutioncan no
longerbe neglected,specialisedalgorithms that exploit the structure of the QPs arising in
MPC problemsbecomean interestingalternative. Basically, two approachesto fast QP
solution in MPC can be distinguished:

(i) First, the explicit, or o�ine QP solution, which precomputesthe QP solution for all
possiblyarisingprobleminstances.This canbe donequite e�ciently , asshown by [8],
but is limited to modelswith smallstate dimensions(below ten) and few constraints.

(ii) Second,the online QP solution is the classicalway to treat the sequenceof QPs in
MPC for varying initial values.

1



Chapter 1. Intro duction

SeveralQP solution methods exist, among the most prominent are active set methods,
whichcomein two variants, namelyprimal [37], [39] and dual [45], [3] activeset methods.
Unfortunately, for activesetmethodsno polynomialboundon the runtime of the algorithm
can be given,as hasfamouslybeenshown by Klee and Minty [56] in the context of linear
programming. Furthermore, (primal-dual) interior point methods, cf. [91], havebecomea
strongcompetitor to activeset methods,andhavealsobeenproposedfor usein MPC [73].
They possessrelativelyconstant computationaldemandsand a polynomial runtime guar-
anteecan be given for them. However, interior point methods su�er from the drawback
that so far no e�cient warm start techniquesexist.

In this thesisa new active set strategy is proposed(seealso [30], [29]) that is inspiredby
someimportant observationsfrom the �eld of parametric quadraticprogrammingand can
neither be classi�ed primal nor dual. It builds on the expectation that the active set does
not changemuchfrom onequadraticprogramto the next, but is di�erent from conventional
warm starting techniques.Our onlineactive set strategy comesin two variants: while the
�rst is just an alternative way to exactly solve the QPs arising in MPC e�ciently (but
without theoretical runtime limit), the secondone is able to give a CPU time guarantee.
This guarantee, however, comesat the expenseof sometimesnot solvingexactly the QP
that we want to solvewithin the givensamplingtime. In thesecircumstances|that arise
e.g.after largedisturbancesof the controlledprocess|an intermediateQP that liesbetween
the previousproblemand the current one is solved,instead.
An implementationof the proposedonlineactive set strategy, the software module OASES,
was tested on two test examplesand its performancewas compared to that of existing
methods for solving QPs, namely the primal active set solver qpsol [62] and an imple-
mentation of the explicit approach[9]. The �rst test exampleis a variant of a challenging
benchmark problem (�rst presentedin [86]) wherea chain of spring connectedmassesis
regulatedbackinto its steady-stateafter a strongexcitation. Second,we aim at controlling
a real-world Dieselengineat the Institute for DesignandControl of MechatronicalSystems
in Linz, Austria.

The thesisisorganisedasfollows: in Chapter2 the requiredandmotivating theoreticalback-
ground of model predictive control, with focus on linear MPC, and parametric quadratic
programming is briey summarised. Afterwards, Chapter 3 reviewsseveralexisting and
widelyusedmethods for solvingquadraticprograms.Our onlineactiveset strategy, includ-
ing its real-time variant, is presentedin Chapter 4 which also containsa short discussion
on degeneracyhandling and implementationdetails. The mentionedtest problemsform
the basisof a performanceanalysisof the proposedonlineactiveset strategyin Chapters5
and 6. Finally, Chapter7 is devotedto a conclusionand someideasfor future work.
Theappendicescomprisemathematicalbasics(AppendixA) andanimplementationoverview
of the software module OASES(Appendix B). Ultimately, an applicationof fast nonlinear
model predictive control to a gasolineengineis presentedin Appendix C, which initiated
the developmentof our onlineactive set strategyfrom a practical point of view.
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Chapter 2

Theoretical Background and
Motivation

This chapterbeginsby introducing the conceptsof model predictivecontrol. Putting the
focus on linear model predictive control naturally leadsus to the descriptionof a special
optimisation problem, the so called (parametric) quadratic program. We show how its
particular structure is exploitedby the recentlydeveloped explicit solutionapproachwhich
motivated the proposedonlineactive set strategy.

2.1 Mo del Predictive Control

Main conceptof model predictivecontrol (MPC) is to repeatedlycalculatecontrol actions
whichoptimisethe forecastedprocessbehaviour.The predictionis basedon a mathematical
processmodel leadingto a so-calledopen-loop optimal control problemwhich is solvedat
eachsamplinginstant. The optimisedcontrol action is appliedto the systemuntil the next
samplinginstant whenan updatedoptimal control problem,incorporating the newprocess
state, is solved.Hence,model predictivecontrol is a feedbackcontrol strategy, sometimes
alsoreferredto as recedinghorizon control (RHC).

A (continuous-time)processmodel for a time intevalT def= [tstart ; tend] � R, �1 < tstart �
tend � 1 , consistsof

1. processinputs, or controls or manipulatedvariables, u : T ! Rnu ,

2. processstates, dividedinto

(a) di�erential states x : T ! Rnx and

(b) algebraic states z : T ! Rnz

3. processparametersp 2 Rnp

4. processoutputs, or controlledvariables, y : T ! Rny ,

andde�nesa mapping(in functionspaces)from a suitablesubsetof processinput functions1

to the setof processoutput functions. This mappingis implicitly givenby an initial process
1E.g. the set of all processinput functions suchthat (2.1.1) hasa unique solution and (2.1.2) is de�ned

for all t 2 T.

3



Chapter 2. Theoretical Background and Motivation

state valueand a systemof di�erential algebraic equations (DAE)

x(tstart ) = w0 ; (2.1.1a)

_x(t) = f
�
t; x(t); z(t); u(t); p

�
8 t 2 T ; (2.1.1b)

�

= g
�
t; x(t); z(t); u(t); p

�
8 t 2 T ; (2.1.1c)

aswell as

y(t) def= ŷ
�
t; x(t); z(t); p

�
8 t 2 T ; (2.1.2)

wherew0 2 Rnx , f : Df � R1+ nx + nz + nu + np ! Rnx , g : Dg � R1+ nx + nz + nu + np ! Rng ,
and ŷ : Dŷ � R1+ nx + nz + np ! Rny .

It shouldbe noted that thereexistsa greatvariety of di�erent model typeswithin the MPC
context which can be roughly divided into �rst principlesmodels and identi�ed models.
First principlesmodels try to replicate,e.g., physicalor chemicallaws of nature whereas
identi�ed modelsare basedon empiricalmeasurementsof the real process.The de�nition
givenaboveis suitedfor dynamical�rst principlesmodelswhichwill beusedthroughoutthis
thesisexceptfor Chapter6. In the latter casedynamicalidenti�ed models are usedwhich
were obtained by choosing the so-calledstate-spacerepresentation (2.1.1)-(2.1.2) such
that it best matchesthe measuredinputs to the measuredoutputs. An important class
of identi�ed modelsare so-calledstep or impulseresponsemodels, which do not include
processstatesand are described in more detail in [18]. Another approach,which doesnot
clearly �t into the mentionedcategories,is the usageof neuralnetwork models[69]. Further
examplesfor the di�erent model typesandtheir applicationin industrycanbe foundin [72].

Model predictive control usesa processmodel in order to forecast the processdynamics
as well as the processoutputs and calculatesinputs which optimisethis predictedprocess
behaviourwith respect to a so-calledobjectivefunction and subjectto desiredconstraints.
The forecastingis performedfor a certainperiod, the predictionhorizon of lengtht p 2 R> 0,
by integrating the model equations(2.1.1).

A (continuous-time)objectivefunction measuresthe processperformanceover the predic-

tion horizon Tp
def= [t0; t0 + tp], t0 2 [tstart ; tend � tp], and is usuallyof the following Bolza

type:
t0+ tpZ

t0

 
�
t; y(t); u(t)

�
dt + �

�
y(t0 + tp)

�
; (2.1.3)

where : D � R1+ ny � nu ! R and � : D � � Rny ! R are calledLagrangeand
objective function!Mayer term, respectively. Note that the Lagrangeterm measuresthe
processperformanceduring the prediction horizon whereasthe Mayer term only evaluates
the processoutput at the end of the prediction horizon. We usethe commonconvention
that the objectivefunction is formulatedin sucha way that we aim at minimisingits value.

One of the most important featuresof MPC is its capability to guarantee that process
inputs or outputs satisfydesiredconstraintswhich can be written in the following general
form

l � c
�
t; y(t); u(t); p

�
; (2.1.4)

4



2.1. Mo del Predictive Control

where c : Dc � R1+ ny + nu + np ! Rnc is a suitable function de�ning, together with
l 2 Rnc , nc inequality constraints. It is obvious that also equality constraints can be
expressedusingthis formulation (although they could be includedin g, too).

With theseingredients,namelyEqs.(2.1.1)-(2.1.4), we are able to formulate

De�nition 2.1 (open-loop optimal control problem): An open-loopoptimalcontrolprob-

lemoverthe predictionhorizonTp
def= [t0; t0+ tp], tp 2 R> 0, is the taskof �nding anoptimal

processinput u(t) solving

OCP(t0) : min
x ( t ) ; z ( t ) ;
u ( t ) ; y ( t )

t0+ tpZ

t0

 
�
t; y(t); u(t)

�
dt + �

�
y(t0 + tp)

�
(2.1.5a)

s: t : x(t0) = w0(t0) ; (2.1.5b)

_x(t) = f
�
t; x(t); z(t); u(t); p

�
8 t 2 Tp ; (2.1.5c)

�

= g
�
t; x(t); z(t); u(t); p

�
8 t 2 Tp ; (2.1.5d)

y(t) = ŷ
�
t; x(t); z(t); p

�
8 t 2 Tp ; (2.1.5e)

l � c
�
t; y(t); u(t); p

�
8 t 2 Tp ; (2.1.5f)

wherethe notation w0(t0) indicatesthat the inital processstate dependson the starting
time t0. �

Let us assumethat the processto be controlledvia MPC starts at time instant t start , ends
at time instant tend (1 < tstart < tend < 1 ) and that

t0 < t1 < : : : < tnsample ; nsample 2 N ; (2.1.6a)

t0
def= tstart ; tnsample

def= tend (2.1.6b)

is a sequenceof samplinginstants satisfying

t i � t i � 1 � tp 8 i 2 f 1; : : : ; nsampleg : (2.1.7)

After the solution of OCP(t i ) the optimal processinput �uopt (t) is appliedto the process
until the next samplinginstant t i +1 . Then the current processstate is obtained(measured
or estimated) and the optimal control problem OCP(t i +1 ) is solvedwith this updated
initial valuefor the processstate. This yieldsthe model predictivecontrol conceptwhich
is summarisedin Algorithm 2.1 and illustrated in Fig. 2.1.

Onemay askwhy it is necessary to solvethe open-loop optimal control problemrepeatedly:

If onewould choosetp
def= tend � tstart it would su�ce to solvethe �rst problemOCP(t start )

and to apply the resulting justi�ed if one assumes,from a purely theoretical point of
view, that the model describes the real processexactly and that all inputs can be applied
instantaneouslyto the real process.
However, theseconditionsare neversatis�ed in a real-world environment:exceptfor very
rare casesthere are always discrepanciesbetween the model and real process,known as
model-plantmismatch, asthe realprocessis too complexto model it exactly. Sometimesthe
processdynamicsare not evenknown completelymakingapproximationsor interpolations
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Chapter 2. Theoretical Background and Motivation

necessary. Moreover, unknown disturbancesare almost always present in real-world and
measurementnoise2 impedesthe exact determinationof the initial processstate. On the
otherhand,the calculatedoptimal inputsoftencannotbeappliedexactlyto the realprocess.
Sinceactuators, valvesandevenelectronicdevicesneeda short time period, known asdead
time, to react, thereisalwaysa short delay in the applicationof the optimal inputs(although
this could be counteractedby prediction). A further delay stemsfrom the fact that the
controller needssometime to calculatethe new optimal inputs. And evenif thesedelays
are negligible,deviationsbetweenthe optimisedand the appliedinputs may occur because
the actuators are not able to behavelike an, in principle, arbitrary (measurable)function
u(t) includingdiscontinuities.
All thesecircumstancesmake a feedbackcontrol strategymandatory for a real-world setup.
The incorporation of the current processstate (as initial value) at eachsamplinginstant
adjusts the predicted processbehaviourto the real one leading to more reliable results.
Normally the more severethe above-mentionede�ects are the more samplinginstantsare
chosen.If the samplinginstantsare chosenequidistant, i.e.

� def=
tend � tstart

nsample
; t i

def= i � � 8 i 2 f 1; : : : ; nsampleg ; (2.1.8)

we call � 2 R> 0 the samplingtime.

Algorithm 2.1 (mo del predictive control concept)

input: open-loop optimal control problemOCP(t 0),
sequenceof samplinginstants t0; t1; : : : ; tnsample � 1 asde�ned in (2.1.6)

output: piecewisede�ned optimal processinputs uopt : [tstart ; tend] ! Rnu

(1) Set i  0.

(2) Obtain current processstate w0(t i ) and formulate OCP(t i ).

(3) Obtain �uopt (t), t 2 [t i ; t i + tp], by solvingOCP(t i ).

(4) Set uopt (t) def= �uopt (t) 8 t 2 [t i ; t i +1 ] and apply �uopt (t)
�
�
[t i ;t i +1 ] to the processuntil

t i +1 .

(5) if i = nsample � 1:

stop!

else

Set i  i + 1 and continuewith step (2).

2We should emphasisethat the current processstate w0 is neverknown exactly in practice since it has
to be obtained by meansof (more or less) inaccuratesensors.
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2.1. Mo del Predictive Control

PSfragreplacements

t0 t0 + � t0 + tp t

uopt (t)

y(t)

Figure2.1: Main conceptof model predictivecontrol.

So far, our model predictive control formulation has been rather generalas we did not
pose further conditionson the functions f , g, ŷ, c,  or � . Thesefunctions shouldbe
su�ciently smooth, e.g.twicecontinuouslydi�erentiable, in orderto guaranteethe existence
(and uniqueness)of a solution but they can, in principle, be arbitrary nonlinear functions.
The open-loop optimal control problemsarising in this nonlinear model predictivecontrol
(NMPC) context can, e.g., be solvedusingthe direct multiple shooting method (see[15],
[14], [23], [24]) which is briey summarised in Appendix C, where also an application
exampleis given.
For easeof notation we eliminatethe explicit dependenciesof f , g, ŷ, c on t and p, which
can be donewithout lossof generality:

� Our de�nition allowsprocessmodelsdependingexplicitly on time; mostpresentations
on this topic, however,requirethe processmodelto betime-invariant, or autonomous.
Explicit time dependencecan be eliminatedif an additional state x nx +1 (t) and the
additionaldi�erential equation

xnx +1 (tstart ) = tstart ; (2.1.9a)

_xnx +1 (t) = 1 8 t 2 T (2.1.9b)

is introduced.

� Processparameterscanbe written asdi�erential statesby introduction of additional
statesxnx + i (t), 1 � i � np, and imposingthe additionalequations

xnx + i (tstart ) = pi 8 i 2 f 1; : : : ; npg ; (2.1.10a)

_xnx + i (t) = 0 8 t 2 T 8 i 2 f 1; : : : ; npg : (2.1.10b)
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Chapter 2. Theoretical Background and Motivation

The following presentationis restrictedto time-invariant, linear open-loop optimal control
problemsasthey are more directly linked to the utilisation of the proposedonlineactiveset
strategy. Furthermore, from now on we make the assumptionthat the processmodel does
not includealgebraic variables.This meansthat the processstate is described by a system
of ordinary di�erential equations (ODEs)

x(tstart ) = w0 ; (2.1.11a)

_x(t) = f
�
x(t); u(t)

�
8 t 2 T ; (2.1.11b)

insteadof a DAE system(2.1.1). This assumptionis verycommonwithin the linear model
predictivecontrol community.

2.2 Linear Mo del Predictive Control

The namelinear modelpredictivecontrol refersto situationsin whicha linear time-invariant
processmodel, linear constraintsand a quadratic objectivefunction is used.This doesnot
imply that the real processto be controlledhaslinear dynamics.

A (continuous-time)processmodel is calledlinear time-invariant (LTI) if it canbe written
in the form

x(tstart ) = w0 ; (2.2.1a)

_x(t) = Ax (t) + B u(t) 8 t 2 T ; (2.2.1b)

y(t) = Cx(t) 8 t 2 T ; (2.2.1c)

with constant3 matricesA 2 Rnx � nx , B 2 Rnx � nu , C 2 Rny � nx . Sincealmost all real
processesexhibit nonlinearities, linear processmodels are often obtained by linearising a
nonlinear model at someworking point, normally at a steady-state.

De�nition 2.2 (steady-state): Everypair (x̂; û) satisfying
�

= f
�
x̂; û

�
(2.2.2)

is calleda steady-stateof a systemof ordinary di�erential equations

_x(t) = f
�
x(t); u(t)

�
8 t 2 T : (2.2.3)

This meansthat a processis at a steady-statei� it remainsthere if input û is applied. �

Constraintsfor a processmodel are calledlinear i� they can be written as

l � M y(t) + N u(t) ; (2.2.4)

with constant matrices M 2 Rnc � ny , N 2 Rnc � nu and a constant lower bound vector
l 2 Rnc . As a specialcaseof (2.2.4), in most linear MPC problemsat leastboundson the
inputs and outputs are imposed,i.e.

u � u(t) � u 8 t 2 T ; (2.2.5a)

y � y(t) � y 8 t 2 T ; (2.2.5b)

3Linear time-variant processmodels allow for time-varying matrices A(t), B (t) and C(t).
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2.2. Linear Mo del Predictive Control

whereu; u 2 Rnu andy; y 2 Rny . Input boundstypicallyexpressphysicallimitations of the
actuators, output boundsare often necessary to ensuresafeprocessoperating conditions.

The objectivefunction (of Bolza type) is (convex)quadratic i� it can be written as

1
2

t0+ tpZ

t0

(y(t) � yref ) 0Q (y(t) � yref ) + (u(t) � uref ) 0R (u(t) � uref ) dt

+
1
2

(y(t0 + tp) � yref )
0P (y(t0 + tp) � yref ) ;

(2.2.6)

with constantmatricesQ 2 Sny
� 0, R 2 Snu

� 0, P 2 Sny
� 0 and constant referencevalue vectors

yref 2 Rny , uref 2 Rnu .
Matrix Q|w e will discussthe meaningof P later|ma y penalisedeviationsof the pro-
cessoutputs from a certain referencevalue,therefore positivesemi-de�nitnessis assumed.
Matrix R is requiredto be positive de�nite in order to penalisedeviationsof the process
inputs from a desiredreferencevalue. Positive de�nitenessof R is alsonecessary in order
to ensurethat the resulting optimisation problem is strictly convex,as will be shown in
Theorem 2.2. MPC problemswith this type of objectiveare often referredto as reference
tracking problems; alsotrajectory tracking problemswhereyref anduref vary with time are

conceivable.In the specialcasewherey(t) def= x(t) 8 t 2 T, yref
def=

�

, uref
def=

�

they aim at
regulating the processto the origin.

After thesepreperationswe can give the following

De�nition 2.3 (linear open-loop optimal control problem): A linear open-loopoptimal

controlproblemoverthe predictionhorizonTp
def= [t0; t0+ tp], tp 2 R> 0, is the taskof �nding

an optimal processinput u(t) solving

OCPlin (t0) : min
x ( t ) ; u ( t ) ;

y ( t )

1
2

t0+ tpZ

t0

(y(t) � yref )
0Q (y(t) � yref ) + (u(t) � uref )

0R (u(t) � uref ) dt

+
1
2

(y(t0 + tp) � yref ) 0P (y(t0 + tp) � yref ) (2.2.7a)

s: t : x(t0) = w0(t0) ; (2.2.7b)

_x(t) = Ax (t) + B u(t) 8 t 2 Tp ; (2.2.7c)

y(t) = Cx(t) 8 t 2 Tp ; (2.2.7d)

l � M y(t) + N u(t) 8 t 2 Tp ; (2.2.7e)

whereall quantitiesare de�ned as in Eqs.(2.2.1), (2.2.4), (2.2.6). �

2.2.1 Problem Discretisation

If u(t) is allowed to be an arbitrary measurablereal-valuedfunction, OCP lin (and its gen-
eralisationOCP) is an in�nite dimensional(over R) optimisationproblem. Although there
exist necessary conditions|based on the calculusof variations or Pontryagin's maximum
principle [49], [70]|fo r �nding the optimal solutionof suchproblems,theseso-calledindi-
rect methods are of limited usefor MPC purposes(cf. [12, p.85-87]).

9



Chapter 2. Theoretical Background and Motivation

Direct methods parameterisethe control functions in order to reducethe optimal control
problemto a �nite dimensionalone. This lossof degreesof freedomgreatly simpli�es the
solution of the problem but is normally irrelevant for processperformancein practice. A
very popular control parameterisationis to requirethat the control functionsare piecewise
constant (or piecewiselinear ) on an equidistantgrid, as anticipated in Figure 2.1. If the

predictionhorizon[t0; t0+ tp] isdividedinto np intervalsof length� p
def= tp

np
this canformally

be written as:

u(t0 + i � � p + t) def= ui 8 t 2 [0; � p) 8 i 2 f 0; : : : ; np � 1g ; (2.2.8a)

u(t0 + tp) def= unp � 1 ; (2.2.8b)

with ui 2 Rnu , 0 � i � np � 1. In general,it is reasonableto choose

� p
def= � � � ; � 2 N : (2.2.9)

After a control parameterisationthe trajectories x(t) and y(t) can be expressedas func-
tions of the initial value w0 and �nitely many optimisation variablesu0; : : : ; unp � 1; thus
the optimal control problemOCPlin is transformed into a quadraticprogram (QP) which
comprisesa quadraticobjectivefunction andlinear constraints4. Direct methodsare usually
subdivided into three main variants dependingon the way in which thesetrajectories are
evaluated:

� direct singleshooting integratesthe ODE systemover the wholeprediction horizon
at oncefor �xed valuesof w0 and ui ;

� direct multiple shooting [15] solvesthe ODE systemindependentlyon eachinterval
[t0 + i � � p; t0 + (i + 1) � � p] by introducingadditional intermediateinitial valuesand
addingcontinuity constraintsto the NLP (seeSectionC.4 for further details);

� direct collocation [79] approximates the trajectory x(t) by piecewisepolynomials
which satisfy the ODE only at a the points of a �ne grid.

Also the constraintsneedto be discretisedand their ful�lment is ensuredonly at a �nite
number of time instants, e.g. at t0 + i � � p, 1 � i � np � 1. Similarly, the continuous
objectivefunction is evaluatedon a discretetime-grid only (of course,this is always done
whenusingnumericalquadratureformulae).

For the solution of linear open-loop optimal control problemsa direct singleor multiple
shooting approachis often appropriate. Therefore we parameterisethe controls,or process

inputs,aspiecewiseconstantfunctionsonanequidistantgrid Tdisc
p

def= f k0; : : : ; k0 + np � 1g.
The objectivefunction aswell as the constraintsare evaluatedonly at the time instantsof
this grid and thus the valuesof the trajectoriesx(t) and y(t) are calculatedonly there. We
endup with a

4In the general case the optimal control problem OCP is transformed into a nonlinear programming
(NLP) problem with a nonlinear objective function and possiblynonlinear constraints.
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2.2. Linear Mo del Predictive Control

De�nition 2.4 (discrete-time linear open-loop optimal control problem): A discrete-
time linear open-loop optimal control problem over the discrete-timeprediction horizon

Tdisc
p

def= f k0; : : : ; k0 + np � 1g, np 2 N, is the task of �nding a sequenceof constant
optimal processinputs uk0 ; : : : ; uk0+ np � 1 solving

OCPdisc
lin (k0) : min

x k 0
;::: ;x k 0 + n p ;

y k 0
;::: ;y k 0+ n p ;

u k 0
;:::;u k 0+ n p � 1

1
2

k0+ np � 1X

k= k0

(yk � yref ) 0Q (yk � yref ) + (uk � uref ) 0R (uk � uref )

+
1
2

�
yk0+ np � yref

� 0P
�
yk0+ np � yref

�
(2.2.10a)

s: t : xk0 = w0(k0) ; (2.2.10b)

xk+1 = Adiscxk + B discuk 8 k 2 Tdisc
p ; (2.2.10c)

yk = Cxk 8 k 2 Tdisc
p [ f k0 + npg ; (2.2.10d)

l � M yk + N uk 8 k 2 Tdisc
p ; (2.2.10e)

whereall quantities, except for Adisc 2 Rnx � nx and B disc 2 Rnx � nu , are de�ned as in
Eqs.(2.2.1), (2.2.4), (2.2.6). �

The discrete-timesystemmatricesAdisc and B disc canbe calculatedfrom their continuous
counterparts: standard calculusleadsto the solutionof the ODE system(2.2.7c)

x(t) = e(t � t0 )A x(t0) +

tZ

t0

e(t � s)A B u(s) ds 8 t � t0 : (2.2.11)

If the processinput on the intervall [k0; k1] def= [t0; t0 + � p] has constant valueu0 2 Rnu ,
the processstate at time instant t0 + � p is

x(t0 + � p) = e(t0 + � p � t0 )A x(t0) +

t0+ � pZ

t0

e(t0+ � p � s)A B u(s) ds (2.2.12a)

= e� p A
| {z}

=
def

A disc

x(t0) +

0

B
@

t0+ � pZ

t0

e(t0 + � p � s)A B ds

1

C
A

| {z }
=

def
B disc

u0 : (2.2.12b)

It is easyto show by induction that the processstatesat all time instants in T disc
p can be

obtained via the samematricesAdisc and B disc accordingly, provided that the valuesof
Tdisc

p are equidistant. For easeof notation, we drop the superscript\ disc" from Adisc, B disc

and Tdisc
p in the remainderof this thesisif an equidistantdiscrete-timeprediction horizon

is used.
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2.2.2 Closed-Loop Stabilit y

Now, we will give a short discussionon the meaningof the so-calledterminal penalty
weight matrix P in Eqs. (2.2.6), (2.2.7a) and (2.2.10a). It is introduced in order to
compensatethe �nitenessof the predictionhorizon Tp: dueto (online) solutioncomplexity
the prediction horizon is usually much shorter than the total runtime of the controlled
process,i.e. tp � tend � tstart . Thus it may happen that optimal processinputs for the
time interval [t i ; t i + tp] leadto verypoor processperformanceafterwards. Of course,there
will be re-optimisationsuntil t i + tp but too short-sightedactionscanspoil future behaviour,
anyway, and it may evenhappen that the controller causesthe processto start oscillating.
This observation,which has also great practical relevance,is topic of a huge number of
articles which investigate(necessary and) su�cient conditionsfor stability of a controlled
process(seee.g. [76], [55], [13], [20], [61] and the referencestherein).
We considera (discrete-time) time-invariant linear processmodel as described by equa-
tions (2.2.10b)-(2.2.10d). Let us assumethat the corresponding optimal control problem

OCPdisc
lin (k0) is feasiblefor all w0

def= w0(k0) 2 Rnx and its (unique) optimal solution is
the sequenceuk0 (w0); : : : ; uk0+ np � 1(w0). Then we cande�ne a (usuallynonlinear) vector-
valuedmapping

J : Rnx � ! Rnu

w0 7�! uk0 (w0) ;
(2.2.13)

which enablesus to write the ODE systemof the closed-loop controlled processmodel as

xk0 = w0 ; (2.2.14a)

xk+1 = Ax k + B J (xk ) 8 k 2 Tp (2.2.14b)

= (A + B J )(xk ) 8 k 2 Tp : (2.2.14c)

If (x̂; û) 2 Rnx + nu denotesan arbitrary steady-stateof the processmodel and

yref
def= Cx̂ ; uref

def= û (2.2.15)

is chosen,J (x̂) = û holdsbecausethe objectivefunction hasoptimal value0 for the choice
uk i = û 8 i 2 f 0; : : : ; np � 1g. Thus, if the closed-loop controlledprocessis at this steady-
state it will stay there. The controlledprocessis calledclosed-loop asymptoticallystable if
it returns to the steady-state(x̂; û) from everyinitial processstate value:

De�nition 2.5 (closed-loop asymptotic stabilit y): Let a discrete-time time-invariant
linear processmodel with steady-state(x̂; û), a corresponding open-loop optimal control
problemOCPdisc

lin (k0) (which is feasiblefor all w0 2 Rnx) satisfyingthe de�nitions (2.2.15)
and a map J as in (2.2.13) be given.
Then the processmodel closed-loop controlledthrough J is called closed-loop asymptoti-
cally stablei�

kxk � x̂k2 ! 0 as k ! 1 ; (2.2.16)

no matter from which initial processstate w0 2 Rnx the closed-loop control is started. �
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It is easyto show that a closed-loop controlledprocessmodel is closed-loop asymptotically
stableif and only if the norm of all eigenvaluesof the mappingA + B J in Eq. (2.2.14c) is
smallerthan one. Undersomemild conditions(stabilisability5 anddetectability5), it canbe
shown that linear MPC is closed-loop asymptoticallystableif an in�nite predictionhorizon
is used(cf. e.g. [2, p.773]). For linear MPC with a �nite prediction horizon the following
result holds[74]:

Theorem 2.1 (stabilit y of linear MPC): Let

min
uk 0 ;:::;uk 0+ n p � 1

1
2

k0+ np � 1X

k= k0

x0
kQxk + u0

kRuk +
1
2

x0
k0+ np

Pxk0+ np (2.2.17a)

s: t : xk0 = w0(k0) ; (2.2.17b)

xk+1 = Ax k + B uk 8 k � k0 ; (2.2.17c)

x � M xk 8 k � k0 ; (2.2.17d)

u � N uk 8 k � k0 ; (2.2.17e)

with x 2 Rnx , u 2 Rnu and x; u <
�

, be a discrete-timelinear open-loop optimal control
problem with vectors and matricesde�ned as in De�nition 2.4. If, in addition, (A; B ) is
stabilisable,

�
Q

1
2 ; A

�
is detectable,andif P is the (unique)solutionof the discretealgebraic

Riccati equation

P = Q + A0PA � A0PB
�
R + B 0PB

� � 1 B 0PA : (2.2.18)

Then there existsa �nite valuenp
def= n�

p 2 N suchthat the sequenceof optimal process
inputsuk0 ; : : : ; uk0+ n �

p � 1 aswell asthe optimal objectivefunction valueof (2.2.17) are also

optimal for the choicenp
def= 1 (without the summandincludingP). Thus,alsothe optimal

control problem (2.2.17) with �nite prediction horizon n �
p is closed-loop asymptotically

stable. �

Proof: Canbe found in [74]. �

This result shows that it is possibleto replacethe linear open-loop optimal control problem
over an in�nite horizon (np = 1 ) by a �nite one whithout losingoptimality and stability.
Since it only states the existenceof such an n �

p 2 N the question remainsopen: how
to choose np in practice? The proof of Theorem 2.1 is basedon the observationthat
there always exists a time instant n �

p as from which no input or state constraint would
be violatedevenif they wereomitted from the problemformulation (yielding the so-called
linear-quadratic regulator [53]). If suchan n �

p is chosenas length of the �nite prediction
horizon optimality of the solution is preserved.Therefore, it is suggestedin [64], wherea
similar strategy for the nonlinear caseis presented,to ensurethat np \is `large' compared
to the systemdynamics". Of course,this is not a rigorous answer but as a rule-of-thumb
it shouldsu�ce to choosethe length of the prediction horizon a few times larger than the
time the processneedsto return into a steady-stateafter a strong pertubation.

5For a de�nition seeany textbook on control theory, e.g. [2] or [90].
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2.2.3 Condensing into a Smaller Scale Parametric Quadratic Program

In this sectionwe will show how the discretisedlinear open-loop optimal control problem
OCPdisc

lin (k0), which is a parametric quadraticprogram(cf. De�nition 2.11), can be trans-
formed into a smallerscaleone. For easeof notation, we consideronly the casewhen

the processis to be regulatedto the origin (i.e. yk
def= xk 8 k � k0, yref

def=
�

, uref
def=

�

),
adaptationsto the generalsituation are straightforward.

UsingEq. (2.2.10c) all processstatesat time instantsgreaterthan k0 canbe expressedvia
the inital processstate xk0 and the input sequenceuk0 ; : : : ; uk0+ np � 1:

xk0+1 = Ax k0 + B uk0 ; (2.2.19a)

xk0+2 = A (Ax k0 + B uk0 ) + B uk0+1 = A2xk0 + AB uk0 + B uk0+1 ; (2.2.19b)
:::

xk0+ j = A j xk0 +
j � 1X

i =0

A j � 1� i B uk0+ i ; j 2 f 0; : : : ; npg : (2.2.19c)

In order to reformulate OCPdisc
lin (k0) we introducethe following augmentedquantities:

�x def=

0

B
B
B
@

xk0

xk0+1
:::

xk0+ np

1

C
C
C
A

; �u def=

0

B
B
B
@

uk0

uk0+1
:::

uk0+ np � 1

1

C
C
C
A

; (2.2.20a)

�Q def=

0

B
B
B
B
B
B
@

Q
Q

:: :
Q

P

1

C
C
C
C
C
C
A

; �R def=

0

B
B
B
@

R
R

:: :
R

1

C
C
C
A

; (2.2.20b)

�A def=

0

B
B
B
B
B
B
B
B
@

Id
A
A2

:::
Anp � 1

Anp

1

C
C
C
C
C
C
C
C
A

; �B def=

0

B
B
B
B
B
B
B
B
@

�

B
AB B

:::
: : :

: : :
Anp � 2B � � � AB B
Anp � 1B Anp � 2B � � � AB B

1

C
C
C
C
C
C
C
C
A

; (2.2.20c)

�M def=

0

B
B
B
B
@

M
�

M
:::

: : :
:::

M
�

1

C
C
C
C
A

; �N def=

0

B
B
B
@

N
N

:: :
N

1

C
C
C
A

; �l def=

0

B
B
B
@

l
l
:::
l

1

C
C
C
A

; (2.2.20d)

wherein �x 2 R(np +1) �nx , �u 2 Rnp �nu , �Q 2 R(np +1) �nx � (np +1) �nx , �R 2 Rnp �nu � np �nu ,
�A 2 R(np +1) �nx � nx , �B 2 R(np +1) �nx � np �nu , �M 2 Rnp �nc � (np +1) �nx , �N 2 Rnp �nc � np �nu ,
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2.2. Linear Mo del Predictive Control

�l 2 Rnp �nc . Then the discretelinear open-loop optimal control problem OCPdisc
lin (k0) (for

regulatingthe processto the origin) can be written as follows:

min
�u

1
2 �x0 �Q�x + �u0�R �u (2.2.21a)

s: t : xk0 = w0(k0) ; (2.2.21b)

�x = �Ax k0 + �B �u ; (2.2.21c)
�l � �M �x + �N �u : (2.2.21d)

Substituting(2.2.21b) and(2.2.21c) into the objective(2.2.21a) andthe constraints(2.2.21d)
yields

min
�u

1
2 �u0

� �B 0 �Q �B + �R
�

�u + �u0
� �B 0 �Q �A

�
w0(k0) + 1

2w0(k0)0 �A0 �Q �Aw0(k0) (2.2.22a)

s: t : �l � �M �Aw0(k0) +
� �M �B + �N

�
�u : (2.2.22b)

This leadsto

Theorem 2.2 (linear MPC and parametric QPs): Thediscrete-timelinear open-loopop-
timal control problem (2.2.10) (with Q 2 Sny

� 0, P 2 Snu
� 0, R 2 Sny

� 0) for a given constant
w0 2 Rnx is a parametric quadraticprogramof the form

min
�u

1
2 �u0 �H �u + �u0�F w0 (2.2.23a)

s: t : �G�u � �l � �Ew0 ; (2.2.23b)

where �H 2 Rnp �nu � np �nu , �F 2 Rnp �nu � nx , �G 2 Rnp �nc � np �nu , �E 2 Rnp �nc � nx , andthe other
quantitiesare de�ned as in Eqs.(2.2.20). Moreover,the matrix �H is positivede�nite. �

Proof: The �rst statement follows directly from the discussionabove by setting the ma-

trices �H def= �B 0 �Q �B + �R, �F def= �B 0 �Q �A, �G def= �M �B + �N , �E def= �M �A and the remark that the
last summandof Eq. (2.2.22a) can be omitted sinceit is constant for �xed w0(k0). It is
easyto show that a QP of the sameform is obtainedfor referencetracking problems.
It remainsto prove that �H is positive de�nite: Q 2 Snx

� 0 and P 2 Snx
� 0 imply that �Q is

positive semi-de�nite and thus also �B 0 �Q �B . Furthermore, R 2 Snu
� 0 implies that also �R is

positivede�nite. Since �H is a sumof a positivesemi-de�niteand a positivede�nite matrix
it follows �H 2 Snp �nu

� 0 . �

Following [15], we call the transition from the large structuredQP (2.2.21) to the smaller,
but lessstructured QP (2.2.23) condensing. As a generalisationof Theorem 2.2, it can
be shown that the solution of a (discretised)nonlinear MPC open-loop control problem
is equivalentto the solution of a nonlinear program (NLP). Usageof the direct multiple
shooting approach [15] leadsto speciallystructuredNLPs which can e�ciently be solved
via a sequentialquadraticprogramming(SQP) method [71], [85]. This classof methods is
basedon the successivesolution of a sequenceof quadratic programs,insteadof a single
oneas in linear MPC (seealsoSection4.7.2).
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Chapter 2. Theoretical Background and Motivation

2.3 Quadratic Programming

In Section2.2we haveseenthat linear open-loop optimal control problemscanbe expressed
as (parametric) quadraticprograms:

De�nition 2.6 (quadratic program): The optimisationproblem

QP : min
x2 Rn

1
2x0H x + x0g (2.3.1a)

s: t : Gx � b; (2.3.1b)

with

� the Hessianmatrix H 2 Sn def= f M 2 Rn� n j M = M 0g,

� the gradientvector g 2 Rn ,

� the constraintmatrix G 2 Rm� n , and

� the constraint vector b 2 Rm ,

is calleda quadraticprogram. �

Therein, the inequality constraints (2.3.1b) can also contain equality constraints, upper
constraints' boundsas well as bounds on singlevariablesx i , 1 � i � n, by virtue of a
proper choiceof G and b.
We denotethe i -th row of the constraintmatrix G by the vector G0

i ; the matrix composed
of the rows corresponding to constraints in any (ordered) index set A � f 1; : : : ; mg is
denotedby GA . The corresponding part of the constraint vector b (or any other vector
v 2 Rm ) is denotedby bA (vA).

De�nition 2.7 (feasibilit y, boundednessand convexity of a QP): A quadraticprogram
asde�ned in De�nition 2.6 is called

� feasiblei� its feasibleset

F def=
�

�x 2 Rn j G�x � b
	

(2.3.2)

is nonempty and infeasibleotherwise;

� bounded(from below) i� there existsa number � 2 R suchthat

� �
1
2

�x0H �x + �x0g 8 �x 2 F (2.3.3)

and unboundedotherwise;

� convexi� its Hessianmatrix H is positivesemi-de�nite, i.e.

H 2 Sn
� 0 ; Sn

� 0
def=

�
M 2 Sn j v0M v � 0 8 v 2 Rn 	

(2.3.4)

and nonconvexotherwise;
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2.3. Quadratic Programming

� strictly convexi� its Hessianmatrix H is positivede�nite, i.e.

H 2 Sn
� 0 ; Sn

� 0
def=

�
M 2 Sn j v0M v > 0 8 v 2 Rn n f

�

g
	

: (2.3.5)
�

According to Theorem 2.2, all QPs arising within the linear MPC context havea positive
de�nite Hessianmatrix. Thus we make the standingassumptionthat from now on all QPs
are strictly convex, unlessstated otherwise. This also implies that all QPs are bounded
from below becauseof the following

Lemma 2.1 (boundednessof strictly convex QPs): Everystrictly convexquadraticpro-
gram of the form (2.3.1) is boundedfrom below. �

Proof: If weomit the constraintsit isobviousfrom standard calculusthat the unconstrained
QP (F = Rn) hasexactlyoneglobalminimiserat �x def= � H � 1g. Sincethe optimalobjective
function valuecannotdecreasewhenthe feasibleset is madesmaller,i.e. F � Rn , we can
choose� def= 1

2 �x0H �x + �x0g asa lower bound on all objectivefunction valuesof the original
QP. �

This also shows that a strictly convexquadratic program always has a solution if it is
feasible:

Theorem 2.3 (Frank-Wolfe Theorem): If a quadraticprogram (2.3.1) is boundedfrom
below on a nonempty feasibleset F (as de�ned in (2.3.2)), then the objective function
attains its in�mum on F , i.e.

9 xopt 2 F :
1
2

xopt 0H xopt + xopt 0g �
1
2

�x0H �x + �x0g 8 �x 2 F : (2.3.6)
�

Proof: If F is compactthis is true for any continuousobjectivefunction. A proof for the
generalcasecan be found in the appendixof [35]. �

Duality is an important conceptin linear programmingthat canalsobe extendedto convex
quadratic programming[27] (and also to generalnonlinear programming[89]): the main
ideais to formulatea second,the dual, problemwhichcanbeshown (undermild conditions)
to havethe sameoptimalobjectivefunctionvalueasthe original, the primal, one. Moreover,
the dual objectivefunction valueat any dual feasiblepoint providesa lower bound on the
optimal primal objectivefunction value. Thesetheoretical propertiesare veryhelpful when
proving optimality of a certain point and also lead to interesting practical methods for
solvingquadraticprograms,aswill be demonstratedin Chapter3.

De�nition 2.8 (dual quadratic program): We de�ne the dual quadraticprogramof the
QP (2.3.1) to be the problem

QPdual : max
x2 Rn ; y2 Rm

� 1
2x0H x + y0b (2.3.7a)

s: t : H x + g = G0y ; (2.3.7b)

y �
�

; (2.3.7c)
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Chapter 2. Theoretical Background and Motivation

whereall quantitiesare de�nied as in De�nition 2.6.
The notionsof feasibility, boundednessand convexity (cf. De�nition 2.7) alsoapply to the
dual QP; its feasibleset is de�ned as

F dual def=
�

( �x; �y) 2 Rn j H �x + g = G0�y; �y �
�

	
; (2.3.8)

accordingly. �

Sinceanextensivetreatmentof duality is beyondthe scopeof this thesis,we onlysummarise
the main result:

Theorem 2.4 (solution of primal and dual QP): Let a strictly convexprimal and the
corresponding dual quadratic program (as de�ned in De�nitions 2.6 and 2.8) be given.
Then the following holds:

(i) If xopt is a solution to QP (2.3.1) then a solution
�
xopt ; yopt

�
to QPdual exists.

(ii) If a solution
�
xopt ; yopt

�
to QPdual existsthen xopt is a solution to QP (2.3.1).

(iii) In either case

1
2

xopt 0H xopt + xopt 0g = �
1
2

xopt 0H xopt + yopt 0b (2.3.9)

holds. �

Proof: Canbe found in [27], wherea verysimilar result for convexQPswas�rst published
(note that our variant of the secondproposition requiresthe invertibility of H ). �

Corollary 2.1 (bounds on the optimal objective function values): Let a feasible, strict-
ly convexprimal quadraticprogramwith optimal solutionx opt and the correspondingdual
be given(seeDe�nitions 2.6 and 2.8). Then the objectivefunction valueof the dual at an
arbitrary feasiblepoint providesa lower bound on the optimal objectivefunction valueof
the primal, i.e.

1
2

xopt 0H xopt + xopt 0g � �
1
2

�x0H �x + �y0b 8 ( �x; �y) 2 F dual : (2.3.10)
�

Proof: Sincethe primal QP is feasibleandboundedfrom below (cf. Lemma2.1) a solution
must existsaccording to Theorem 2.3. Thus Theorem 2.4 guaranteesthe existenceof an
optimal dual solution

�
xopt ; yopt

�
implying

1
2

xopt 0H xopt + xopt 0g = �
1
2

xopt 0H xopt + yopt 0b � �
1
2

�x0H �x + �y0b: (2.3.11)

for all feasiblepairs ( �x; �y). �

Corollary 2.2 (feasibilit y of primal QP): A strictly convexquadraticprogramis feasible
if and only if its dual is bounded(from above). �
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2.3. Quadratic Programming

Proof: If a strictly convexQP is feasibleTheorem 2.4(i) ensuresthe existenceof anoptimal
solutionof its dual. Thus, its dual is boundedfrom above.
If a strictly convexQP is infeasibleTheorem 2.4(ii) impliesthat its dual cannotpossessan
optimal solution. Sinceits dual is feasible,

�
� H � 1g;

�

�
is always a feasiblepoint, it must

be unbounded(from above). �

In order to formulate explicit optimality conditions for quadratic programswe need the
following de�nitions:

De�nition 2.9 (active and inactive constraints): Let a feasiblequadratic program of
the form (2.3.1) be given. A constraintG0

i x � bi , 1 � i � m, is called activeat �x 2 F i�

G0
i �x = bi (2.3.12)

holdsand inactiveotherwise.The (disjoint) indexsets

A( �x) def=
�

i 2 f 1; : : : ; mg j G0
i �x = bi

	
;

I ( �x) def=
�

i 2 f 1; : : : ; mg j G0
i �x > bi

	

are called set of active constraints, or more commonactive set, at �x and set of inactive
constraintsat �x, respectively. If xopt is an optimal solution of the quadratic program the
correpondingactive set A(xopt ) is called optimal active set. �

De�nition 2.10 (working set): Let a feasiblequadratic program of the form (2.3.1) be
given. Then arbitrary indexsets

A � f 1; : : : ; mg ;

I def= f 1; : : : ; mg n A

are called working set and working set!working set complement, respectively. Their cardi-
nalitiesare denotedwith

nA
def= jAj ;

nI
def= jI j : �

Now we can state the following optimality conditions which are special variants of the
generalnonlinear case(cf. [54], [57]):

Theorem 2.5 (Karush-Kuhn-T ucker conditions): Let QP (2.3.1) be a strictly convex
and feasiblequadratic program. Then there existsa unique x opt 2 Rn and at least one
working set A � A(xopt ) and a vector yopt 2 Rm which satisfy the following conditions:

H xopt � G0
Ayopt

A = � g ; (2.3.13a)

GAxopt = bA ; (2.3.13b)

GI xopt � bI ; (2.3.13c)

yopt
I =

�

; (2.3.13d)

yopt
A �

�

: (2.3.13e)
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Chapter 2. Theoretical Background and Motivation

Furthermore,

(i) xopt is the uniqueglobalminimiserof the primal QP (2.3.1),

(ii) (xopt ; yopt ) is an optimal solutionof the dual QP (2.3.7).
�

Proof: A proof can be found in any textbook on optimisation,e.g. in [17, p.244]. �

Note that neither the set A nor the dual solution yopt are necessarily unique. If all rows
of the matrix GA are linearly independentand A is �xed, however,yopt would be uniquely
determinedfrom Eqs.(2.3.13a) and (2.3.13b):

Lemma 2.2 (invertibilit y of the KKT matrix): Let the Hessianmatrix H be positive
de�nite. Then the so-calledKKT matrix

�
H G0

A
GA

�

�
(2.3.14)

is invertible if and only if GA hasfull row rank. �

Proof: It is obviousthat the KKT matrix is singular if GA doesnot havefull row rank. A
straigtforward proof of the other direction can be found in [65, p.445]. �

If A = A(xopt ), the condition that GA has full row rank is called linear independence
constraintquali�cation (LICQ). Unfortunately, we cannotmake this assumptionin general
within our algorithm, as we will seein Chapter4.

2.3.1 Parametric Quadratic Programming

Quadraticprogramsarising in model predictivecontrol only dependon the current process
state w0. Its (initial) value a�ects the gradient and the constraint vector but does not
changethe Hessianand the constraint matrix, as shown in Theorem 2.2. This is exactly
the situation whereparametric quadraticprogrammingcanbe applied: a (possiblyin�nite)
sequenceof QPs with constantmatricesbut varying vectors.

De�nition 2.11 (parametric quadratic program): The optimisationproblem

QP(w0) : min
x2 Rn

1
2x0H x + x0g(w0) (2.3.15a)

s: t : Gx � b(w0) ; (2.3.15b)

with H 2 Rn� n , G 2 Rm� n , w0 2 Rnx and

g(w0) def= h + F 0w0 ; (2.3.16a)

b(w0) def= l + Ew0 ; (2.3.16b)

(with F 2 Rnx � n , E 2 Rm� nx , h 2 Rn , l 2 Rm ) is called a parametric quadratic
program. �
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2.3. Quadratic Programming

For an arbitrary but �xed w0 we yield an ordinary quadratic program of the form (2.3.1)
and therefore all de�nitions and results presentedso far also carry over to a parametric
quadratic program. But sincethe gradient vector g(w0) and the constraint vector b(w0)
are both a�ne functionsof the current processstate w0, the feasibleset (De�nition 2.7),
its optimal solution (Theorem 2.5), the set of active and inactive constraintsat a certain
point (De�nition 2.9) as well as its dual (De�nition 2.8) also depend on w0. Therefore
thesequantities are written as F (w0), xopt (w0), A

�
w0; xopt (w0)

�
, I

�
w0; xopt (w0)

�
, and

QPdual (w0), respectively|but, for notational convenience,we will sometimesdrop this
dependencewhenit is clear from the context.
Variations of the constraint vector may leadto infeasibleQPs for certain valuesof w0 and
thus we introducethe following

De�nition 2.12 (set of feasible parameters): The set

P def=
�

w0 2 Rnx j F (w0) 6= ;
	

(2.3.17)

is called set of feasibleparametersof a parametric quadraticprogram. �

It hassomespecialpropertieswhich are crucial for the onlineactive set strategypresented
in this thesis:

Theorem 2.6 (convexit y and closednessof the set of feasible parameters): The set
of feasibleparametersof a parametric quadratic program QP(w0) as de�ned in De�ni-
tion 2.12 is convex6 and closed. �

Proof: In order to prove convexity of P, we have to show: if two arbitrary but �xed
quadratic programsQP

�
w(1)

0

�
and QP

�
w(2)

0

�
are feasible,i.e. w(1)

0 ; w(2)
0 2 P, also every

quadratic program QP
�
� w(1)

0 + (1 � � )w(2)
0

�
, � 2 [0; 1] � R, is feasible,which means

� w(1)
0 + (1 � � )w(2)

0 2 P.

If QP
�
w(1)

0

�
and QP

�
w(2)

0

�
are feasiblethere exist �x (1) ; �x (2) 2 Rn suchthat

G�x (1) � b
�
w(1)

0

�
and G�x (2) � b

�
w(2)

0

�

hold. By multiplying theseinequalitiesby � 2 [0; 1] and (1 � � ), respectively, and adding
the resultstogether

� G�x (1) + (1 � � )G�x (2) � � b
�
w(1)

0

�
+ (1 � � )b

�
w(2)

0

�

is obtained(sinceboth � and (1 � � ) are nonnegative).Substituting Eq. (2.3.16b) yields

G
�
� �x (1) + (1 � � ) �x (2) � �

�
� l + (1 � � )l

�
+ E

�
� w(1)

0 + (1 � � )w(2)
0

�

= b
�
� w(1)

0 + (1 � � )w(2)
0

�

whichshows� �x (1) + (1� � ) �x (2) 2 F
�
� w(1)

0 + (1� � )w(2)
0

�
andhence� w(1)

0 + (1� � )w(2)
0 2 P.

6SeeDe�nition A.1
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Second,we show (similar to [10]) that P is closed,i.e. its complementRnx n P is open:
Corollary 2.2 shows that �w0 2 Rnx n P is equivalentto the unboundednessof QPdual ( �w0).
Moreover,

QPdual ( �w0) unbounded ( ) 9 �y 2 Rm : �y �
�

^ �y0b( �w0) > 0 (2.3.18)

obviouslyholds. For �xed �y �
�

, the value �y0
0b( �w0) dependscontinuouslyon �w0 as b( �w0)

dependsa�nely on �w0. Thus, there existsa neighbourhood N ( �w0) of �w0 suchthat

�y0b(ŵ0) > 0 8 ŵ0 2 N ( �w0) : (2.3.19)

Since �w0 was arbitrary, this provesthat Rnx n P is open and therefore P is closed. �

The setof feasibleparametersP is not only convexandclosedbut it alsocanbe subdivided
into a specialcollectionof polyhedra7, the so-calledcritical regions[8]:

De�nition 2.13 (critical region): Let a strictly convex parametric quadratic program
QP(w0) with the set of feasibleparametersP be given. Moreover,let x opt (w0), w0 2 P,
denoteits uniqueoptimal (primal) solution and A

�
w0; xopt (w0)

�
the corresponding active

set (seeDe�nition 2.9). Then, for everyindexset A � f 1; : : : ; mg, the set

CRA
def=

�
w0 2 P j A = A

�
w0; xopt (w0)

�	
(2.3.20)

�

is calleda critical regionof P.

Theorem 2.7 (partition of the set of feasible parameters): For a strictly convexpara-
metric quadraticprogramQP(w0) the following hold:

(i) All closuresof critical regionscl (CRA i ) are closedpolyhedra7 with pairwisedisjoint
interiors.

(ii) The set of feasibleparametersP can be subdividedinto a �nite number of closures
of critical regions:

P =
2m[

i =1

cl (CRA i ) ; A i � f 1; : : : ; mg: (2.3.21)
�

Proof: We only prove this theorem for the situation in which the linear independence
constraintquali�cation (LICQ) is satis�ed for all w0 2 P; an extensionto the generalcase
can be found in [60].
(i): Sincethis �rst part is trivial for empty critical regionswe assumewithout lossof gener-
ality that CRA 6= ; for an arbitrary A � f 1; : : : ; mg. This meansthat thereexistsa w0 2 P
for which A = A

�
w0; xopt (w0)

�
is the activeset correspondingto an optimal solutionxopt

of QP(w0) satisfyingthe optimality conditionsof Theorem 2.5. By substituting

xopt (w0) = H � 1G0
Ayopt

A (w0) � H � 1g(w0) (2.3.22)

7SeeDe�nition A.3
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they can be written as

GAH � 1G0
Ayopt

A (w0) = bA(w0) + GAH � 1g(w0) ; (2.3.23a)

GI H � 1G0
Ayopt

A (w0) > bI (w0) + GAH � 1g(w0) ; (2.3.23b)

yopt
I (w0) =

�

; (2.3.23c)

yopt
A (w0) �

�

: (2.3.23d)

Note that the third KKT condition (2.3.13c) is strictly satis�ed as A = A
�
w0; xopt (w0)

�
.

This leadsto

yopt
A (w0) =

�
GAH � 1G0

A

� � 1 �
bA(w0) + GAH � 1g(w0)

�
; (2.3.24a)

GI H � 1G0
Ayopt

A (w0) > bI (w0) + GAH � 1g(w0) ; (2.3.24b)

yopt
I (w0) =

�

; (2.3.24c)

yopt
A (w0) �

�

; (2.3.24d)

in whichGAH � 1G0
A is invertiblebecauseof the LICQ.Finally, by substitutingEqs.(2.3.16a)

and (2.3.16b) we obtain that A is the active set of an optimal solution as long as the
following linear inequalitieshold:
�

GI H � 1G0
A

�
GAH � 1G0

A

� � 1 �
EA + GAH � 1F 0� (2.3.25a)

�
�
E I + GAH � 1F 0�

�
w0 > GI H � 1G0

A

�
GAH � 1G0

A

� � 1
lA + l I :

�
GAH � 1G0

A

� � 1 �
EA + GAH � 1F 0� w0 �

�
GAH � 1G0

A

� � 1
lA : (2.3.25b)

�

Thus, we derivedan explicit representationof a (nonempty) critical regionCRA . Its closure
with respect to the standard topology of Rnx is obtainedby replacing\ > " with \ � " in
Eqs.(2.3.25) and is thus a closedpolyhedron.
By construction,the strictly convexquadraticprogram QP(w0) is feasiblefor everyw0 2
P which guaranteesthe existenceof an unique optimal solution x opt (w0), according to
Theorem 2.5, anda correspondinguniqueoptimal activeset. Therefore, the critical regions
are pairwisedisjoint and hencetheir closurescan only overlapat their boundaries.

(ii): Sincean optimal active set existsfor everyw0 2 P, the set of feasibleparametersP
equalsthe union of all critical regions. P also equalsthe union of all closuresof critical
regionsasit is closed(i.e. P = cl (P), cf. Theorem 2.6). The number of closuresof critical
regionsis �nite becausethe number of indexsetsA is 2m .

We will see in Chapter 4 that these facts|namely the convexity of the set of feasible
parametersaswell as its partition into closed,convex,polyhedralcritical regions|a re very
important ingredientsfor the proposed online active set strategy; they are depicted in
Figure2.3.1.

The proof of Theorem 2.7 alsogivesus someinsight into the structureof the optimal solu-
tion xopt (w0) of the parametricquadraticprogramQP(w0). We summarisethis important
result in the following
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PSfragreplacements

CRA1

CRA2

CRA3

CRA4

CRA5

CRA6
CRA7

Figure2.2: Partition of the set of feasibleparametersP into critical regions.

Theorem 2.8 (piecewise a�ne optimal solution): Let a strictly convex parametric
quadraticprogramQP(w0) andits setof feasibleparametersP begiven. Thenthe following
is true:

(i) Its optimal solution is a piecewisea�ne and continuousfunction

xopt : P � ! Rn ;

(ii) its optimal objectivefunction valueis a piecewisequadraticand continuousfunction

� opt : P � ! R

w0 7�!
1
2

xopt (w0)0H xopt (w0) + xopt (w0)0g(w0) :

The notion \piecewise" meansthat there exists a �nite partition of P into polyhedral
critical regionssuchthat the restrictionsof xopt and � opt to eachcritical regionare a�ne
or quadratic, respectively. �

Proof: Again,we only provetheseresultsfor the situation in whichthe linear independence
constraintquali�cation (LICQ) is satis�ed for all w0 2 P and refer to [60] for an extension
to the generalcase.
CombiningEqs. (2.3.22) and (2.3.24a) yieldsan explicit a�ne representationof xopt (w0)
overeachclosureof a critical region. Thus, xopt is piecewisea�ne overP and continuous
overeachclosureof a critical region. The boundary betweentwo closuresof critical regions
belongsto both closedregionsand as the optimum is unique, the solution must also be
continuousacrosstheseboundaries (seealso[8]).
The secondpart of the theorem follows trivially from the �rst. �
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2.3. Quadratic Programming

Continuity of the optimal solution function xopt was alreadystated by Fiacco[32] in the
context of sensitivity analysisin nonlinear programming;Za�riou [92] proved that xopt is
piecewisea�ne in order to obtain stability results. Our formulation which explicitly uses
a polyhedralpartition of P was introducedby Bemporad et al. [8] (and re�ned by Mayne
et Rakovic [60]) in order to derivea practical method for the o�ine solutionof parametric
quadraticprogramsarising from MPC problems.

2.3.2 Explicit (O�ine) Solution of Parametric Quadratic Programs

The third step of Algorithm 2.1 requiresthe solution of an open-loop optimal control
problemat eachsamplinginstantduringthe runtimeof the controlledprocess.Althoughthis
task reducesto a simpleoptimisationproblemif the processmodel (and the constraints)is
linear andthe objectivefunction is quadratic,namelya (strictly) convexquadraticprogram,
it may becomecomputationallyprohibitive if veryshort samplingtimesare necessary. Thus,
insteadof solvingeachquadraticprogramduringthe runtimeof the processusinga standard
QP solver(seeChapter3), [8] proposedto solveall possiblyoccuringQPsbeforehand,i.e.
solvingthe parametric quadraticprogramQP(w0), and look up the solutionwhenneeded.
Theorem 2.8 guaranteesthat only a �nite number of critical regionsand the correponding
explicit a�ne representationof the solution have to be stored, making this explicit, or
\o�ine", approachtractable. Sinceavailable(online) computingpower is verylimited (and
memory quite cheap)in most practical applications,explicit model predictivecontrol soon
becamevery popular amongthe engineersof the MPC community. We outline the main
conceptin Algorithm 2.2.

Skippingtechnicaldetails,we briey explainthe o�ine step (0) and the onlinestep (3) of
the explicit linear MPC approach:
The parametricquadraticprogrammQP(w0), alsoreferredto as\ multi-parametric" quad-
ratic program to emphasisethat w0 is usually nonscalar, is solvedas follows [8]: �rst,
an arbitrary parameter ŵ0 in the interior of a critical region is determinedby solvingan
appropriate linear program (LP). Then the quadratic program QP(ŵ0) is solvedwhich
enablesthe determinationof a polyhedralrepresentationf w 2 P j Âw � b̂g of the critical
region CRÂ with ŵ0 2 CRÂ as well as an a�ne representationĈw + d̂ of the optimal
solution over CRÂ . Afterwards, the complementP n CRÂ can easilybe divided into a

partition of m̂ def= dim b̂ convexpolyhedraP1; : : : ; Pm̂ by successivechangesof the de�ning
inequalitiesÂ i w � b̂i into Â i w > b̂i . Finally, thesestepsare recursivelyperformed for
P1; : : : ; Pm̂ . Further re�nementssuchasreductionof the number of QPsto be solvedand
linear dependencehandlingare decribed in [77], [75].

Step(3) canbe implementedstraightforward by just checkingall polyhedralrepresentations,
i.e. checkingif Âw0 � b̂, until the correct critical regionis found and then calculatingthe
optimal solutionvia Ĉw0 + d̂. Sincethe number of critical regionsmay becomevery large,
[78] proprosedthe constructionof a binary search tree (however,this ideadoesnot reduce
the o�ine complexity).

Although the explicit approachsoundsquite appealing,it hasa main drawback: sincethe
number of possiblecritical regionsgrows exponentiallyin the number of constraints(up to
2m di�erent activesets)it is limited to low dimensionalparameterspacesP, i.e. to process
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Chapter 2. Theoretical Background and Motivation

models comprising only very few states8. Otherwisethe o�ine computation and storage
requirementsaswell as the onlinee�ort for �nding the correct critical regionsoon become
prohibitively large. A further seriousproblem in practice is that online tuning becomes
nearly impossibleas the o�ine computationtime blows up.
Therefore, severaltechniquesfor reducingthe o�ine complexity at the expenseof a subop-
timal online performanceand slight constraint violationswere presentedin [7], [51], [78].
The main idea is to combineseveral\small" critical regionsto a \bigger" one. A di�er-
ent procedurecalledpartial enumerationis proposedin [68]: althoughexponentiallymany
critical regionsexist only a very small fraction of them really becomesrelevantduring the
runtime of the process. Thus, insteadof calculatingall critical regions,only (a guessof)
this fraction is calculatedand stored in a cache. If the critical region of the current QP
belongsto the cacheits a�ne representationof the optimal solution is used. Otherwise,
while applyingsomesuboptimal heuristicalcontrol action, the QP is solvedonlineusinga
standard QP solverand the correspondingcritical regionis addedto the cache,afterwards.

Algorithm 2.2 (explicit linear model predictive control concept)

input: discrete-timelinear open-loop optimal control problemOCPdisc
lin (k0),

sequenceof samplinginstants t0; t1; : : : ; tnsample

output: piecewisede�ned optimal processinputs uopt : [0; tend] ! Rnu

(0) Computeand store an explicit piecewisea�ne representationof the solutionx opt to
the parametric quadraticprogramQP(w0) (before start of process!).

(1) Set i  0.

(2) Obtain current processstate w0(t i ).

(3) (a) Determinea critical regionCRA i suchthat w0(t i ) 2 CRA i .

(b) Obtain �rst optimal processinput uk0 = (xopt
1 ; : : : ; xopt

nu )0 from the explicit a�ne
representationof xopt over the critical regionCRA i .

(4) Set uopt (t) def= uk0 8 t 2 [t i ; t i +1 ] and apply uk0 to the processuntil t i +1 .

(5) if i = nsample � 1:

stop!

else

Set i  i + 1 and continuewith step (2).

8State spacedimensionsof about �ve seemto be currently tractable via explicit MPC.
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Chapter 3

Existing Metho ds for Solving
Quadratic Programs

Having introducedthe explicit, or o�ine approach for treatment of parametric quadratic
programs, this chapter is devoted to a short summary of existing solution methods for
quadratic programs. All methods to be presentedare able to solvequadratic programs
arising in the online context of model predictive control but (almost) none of them was
written with this applicationin mind. We describe them for two reasons:�rst, our online
activeset strategyis basedon the so-callednull spacebasedprimal activeset method and
alsoinherits somefeaturesof the dual active set approach. Second,we will usean active-
set method as comparison in severalMPC benchmark tests in Chapters5 and 6, as such
methods are widelyusedin practice. Also interior-point methods are briey mentionedfor
completeness.

3.1 Primal Active Set Metho ds

Let us considerthe task of solvinga strictly convexquadraticprogram,asde�ned in De�-

nition 2.6. If the inequality constraintswhich are activeat the solution,say A def= A(xopt ),
are known beforehandthis problemreducesto the following equality constrainedquadratic
program:

QPec : min
x2 Rn

1
2x0H x + x0g (3.1.1a)

s: t : GAx = bA : (3.1.1b)

Without lossof generality, weassumethat the matrix GA hasfull row rankbecauseotherwise
a suitablelinearly independentsubsetof activeconstraintscouldbe chosen.If QPec is also
feasibleTheorem 2.5 impliesthe following necessary andsu�cient conditionfor the optimal
solution:

�
H G0

A
GA

�

� �
xopt

� yopt
A

�
=

�
� g
bA

�
: (3.1.2)

Thus, solvingQPec becomesequivalentto the solution of a linear systemwhosematrix is
invertible, according to Lemma2.2. Sincethis is an rather trivial task active set methods
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Chapter 3. Existing Metho ds for Solving Quadratic Programs

aim at reducinga QP (2.3.1) to a QPec (3.1.1) by identifying (a suitablesubsetof) the
optimal activeset. An early activesetalgorithm for (general)quadraticprogramswasgiven
in [33]. The basic idea is indeedmuch older sincealso the famoussimplexmethod [22]
for linear programmingcan be interpreted as specialisedactive set method (seee.g. [41]);
and the �rst implementationsfor the solutionof quadraticprogramswereextensionsof the
simplexmethod [88], [22].

Primal active set methods start with a feasiblepoint x (0) (if such a point exists) and a
working set A(0) � A(x (0) ) which servesas an initial guessfor the optimal active set.
Then a sequenceof feasibleiterates x (k) and correponding working setsA (k) , k � 0, are
determined:assumingthat A (k) is indeedan optimal working set, the next iterate

x(k+1 ) def= x (k) + � x (k) (3.1.3)

is the optimal solution if and only if it solvesEq. (3.1.2):

�
H G0

A(k)

GA(k)
�

�  
x(k+1 )

� y(k+1 )
A(k)

!

=
�

� g
bA(k)

�
(3.1.4)

( )
�

H G0
A(k)

GA(k)
�

�  
� x (k)

� y(k+1 )
A(k)

!

= �
�

H x (k) + g
�

�
: (3.1.5)

The reasonwhy system(3.1.5) is solved,insteadof (3.1.4), is that A(k) is only a guessfor
the optimal activeset. Thus, whenmovingfrom x (k) to x (k+1 ) along� x (k) it may happen
that an inactive constraint becomesviolated which rendersx (k+1 ) infeasible. In order to
avoid this (primal) infeasibility, the next iterate x (k+1 ) is chosenas

x(k+1 ) def= x (k) + � (k) � x (k) ; � (k) 2 R� 0 (3.1.6a)

with

� (k) def= min

(

1; min
i =2 A(k)

(
bi � G0

i x
(k)

G0
i � x (k)

�
�
� G0

i � x (k) < 0

) )

: (3.1.6b)

This choiceof � (k) ensuresthat

GI (k) x(k+1 ) = GI (k) x(k) + � (k)G(k)
I (k) � x (k) � bI (k) ; I (k) def= f 1; : : : ; mg n A(k) (3.1.7)

holds, while GA(k) x(k+1 ) = bA(k) is guaranteedby the choiceof � x (k) (cf. Eq. (3.1.4)).
If Eq. (3.1.6b) leadsto � (k) < 1 the constraint which causedthis limitation of � (k) |the
so-calledblocking constraint|is added to the working set, yielding the next working set
A(k+1 ) , and the next iterate is determinedin the abovementionedmanner.
If thereis no blockingconstraint, i.e. � (k) = 1, a full step is taken implyingthat the optimal
solution of the quadraticprogram(2.3.1) is found providedthat A (k) is really the optimal
activeset. We cancheckthis by lookingat the dualsolutionvector y (k+1 )

A(k) : if the uniqueop-
timal solutionx (k) of QPec subjectto the equality constraintsGA(k) x(k) = bA(k) is found the
next step direction � x (k+1 ) must be zero. Therefore Eq. (3.1.5) shows that the �rst op-
timality condition (2.3.13a) of Theorem 2.5 is satis�ed. Moreover, conditions (2.3.13b)
and (2.3.13c) are ful�lled by construction; condition (2.3.13d) can be met by setting
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3.1. Primal Active Set Metho ds

y(k+1 )
I (k)

def=
�

. Thus, according to the last optimaltiy condition (2.3.13e), the current iterate

x(k+1 ) = x (k) is indeedoptimal for the inequality constraint quadratic program (2.3.1) if
and only if eachcomponent of y(k+1 )

A(k) is nonnegative. If this is the casewe have found
the optimal solution of (2.3.1), otherwisewe drop one the constraintscorresponding to a
negativecomponent of y(k+1 )

A(k) from the current working set and proceedwith determinga
new step direction � x (k+1 ) , again1.
A formal summary of the primal active set method is givenin Algorithm 3.1 (cf. [65]):

Algorithm 3.1 (primal active set metho d)

input: strictly convexquadraticprogramQP of the form (2.3.1),
initial guessesfor solutionx (0) and optimal active set A (0) (both optional)

output: optimal solutionxopt of QP and working set A as de�ned in Theorem 2.5
(or messagethat QP is infeasible)

(1) Set k  0 and obtain feasiblestarting point x (0) and working set A(0) � A(x (0) ).

If sucha point doesnot exists:stop (QP infeasible)!

(2) Calculate� x (k) and y(k+1 )
A(k) from Eq. (3.1.5).

(3) if � x (k) =
�

:

if y(k+1 )
A(k) �

�

:

Optimal solutionof QP found: set xopt  x (k) and A  A(k) . stop!

else

Drop a constraint j 2 A (k) with y(k+1 )
j < 0 from working set,

i.e. A(k+1 )  A(k) n f j g, and continuewith step (2).

(4) Computestep length � (k) via Eq. (3.1.6b) and set x (k+1 )  x (k) + � (k) � x (k) .

(5) if � (k) < 1:

Add a blocking constraint j = argmin
i =2 A(k)

bi � G0
i x (k)

G0
i � x (k) to working set,

i.e. A(k+1 )  A(k) [ f j g.

else

Set A(k+1 )  A(k) .

(6) Set k  k + 1 and continuewith step (2).

1It can be shown, seee.g. [65, p. 459{461], that the dropped constraint remainssatis�ed along the new
step direction � x (k +1 ) .
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Chapter 3. Existing Metho ds for Solving Quadratic Programs

Somestepsof Algorithm 3.1 needfurther attention:

Initialisation: If no feasiblestarting point is givenby the userthe algorithm hasto �nd one
in the �rst step,alsoknown asPhaseI (seee.g. [34]). The ideais to formulatean auxiliary
(linear) problem for which a feasiblepoint is known and whosesolution deliversa feasible
starting point for the original problem. For our QP formulation sucha phaseI, or feasibility,
problemcan be the following

min
p2 Rm p ; x2 Rn

� 0p (3.1.8a)

s: t : G+ x + p � b+ ; (3.1.8b)

G� x � b� ; (3.1.8c)

p �
�

; (3.1.8d)

where(3.1.8b) describes a relaxationof the mp, 0 � mp � m, constraintswith positive
componentsof the constraint vector, i.e. b+ >

�

, and (3.1.8c) describes the (m � mp)
constraintswith nonpositive componentsof the constraint vector, i.e. b� �

�

. Then the
choice

x(0) def=
�

; p(0) def= b+ (3.1.9)

is obviouslya feasiblepoint for the auxiliary problem (3.1.8). Furthermore, the original
problem(2.3.1) is feasibleif andonly if the auxiliary problemhasan optimal objectivevalue
of 0. If that is the caseall componentsof p must be zeroand the remainingoptimisation
variablesx form a feasiblestarting point for the quadratic program (2.3.1). The initial
working set can be chosenas a (linearly independent) subsetof the active constraintsat
the starting point.
According to [45], \computational experienceindicatesthat, unlessa feasiblepoint is avail-
able, on the averagebetweenone-third to one-halfof the total e�o rt requiredto solvea
QP is expendedin phaseI." If, as in model predictivecontrol, a sequenceof neighbouring
QPs is to be solvedoptimal solution and correspondingworking set of the last QP can be
usedto initialise a primal active set solver. This warm start idea not only can savethe
phaseI but also may reducethe number of iterations signi�cantly. But due to changes
of the constraint vector the former solution may becomeinfeasiblewhich makesa phaseI
neccessary and thus ruins the possiblebene�t of warm starts.

Droppinga constraint: If severalactiveconstraintscorrespond to a negativecomponent of
the dual solutionvector in step(3) the questionarises:which oneshouldbe removedfrom
the working set? A commonchoiceis to selectthe constraint

j = argmin
i 2 A(k)

y(k)
i : (3.1.10)

It \w orks quite well" [34] in practice \but hasthe disadvantagethat it is susceptibleto the
scalingof the constraints."[65]

Linear independenceof active constraints:The theoretical derivation of the primal active
set algorithm is basedon the assumptionthat matrix GA(k) has full row rank at each
iteration k � 0. Providedthat a linearly independentintial working set A (0) is chosen,this
assumptioncan only be violatedwhena constraint is addedto working set in step (5), as
the deletionof a row cannotleadto rank de�ciency. Sincethe stepdirectionis chosensuch
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3.1. Primal Active Set Metho ds

that all activeconstraintsremainsatis�ed for all steplengthsno constraintwhich is linearly
dependentfrom them can becomea blocking constraint,and thus cannotbe addedto the
working set.
However, there may be points at which the active set is linearly dependent, so-called
degeneratedpoints. At such points successivedeletion and addition of constraintswith
zerostep sizein betweencan happen (eachleavingthe working set linearly independent).
And it may be that the sequenceof working setsobtainedbedeletingandaddingconstraints
at sucha degeneratepoint repeats itself after �nitely many steps,a phenomenonknown
as cycling. \F ortunately, the occurenceof cycling is rare" and \simple heuristicstrategies
almost always succeedin breakingthe deadlock" [42]. In contrast, [65] statesthat \most
QP implementationssimply ignore the possibility of cycling."

Finally, we want to mentionthat Algorithm 3.1 terminatesafter a �nite number of iterations
at the optimal solutionof a strictly convexand feasiblequadraticprogram(2.3.1) provided
that no cyclingoccurs(cf. [65, p.466{467]).

In the next two subsectionswe will have a closer look at how to solve system(3.1.5)
e�ciently .

3.1.1 Null Space Metho d

Solvingsystem(3.1.5) canbe interpretedassolvingan equality constrained,strictly convex
quadraticprogramsimilar to QPec (see[38]):

min
� x (k) 2 Rn

1
2 � x (k) 0H � x (k) + � x (k) 0(H x (k) + g) (3.1.11a)

s: t : GA(k) � x (k) =
�

: (3.1.11b)

The equality constraint implies that a point is feasibleif and only if it lies completelyin
the null space2 of the active constraintsmatrix GA(k) . So, if Z (k) 2 Rn� (n� nA ) is a matrix
whosecolumnsform a basisof the null spaceof GA(k) , i.e. GA(k) Z (k) =

�

, everyfeasible
point can be written as

� x (k) = Z (k) � x (k)
Z ; � x (k)

Z 2 Rn� nA : (3.1.12)

A null spacebasismatrix Z (k) canbe obtainedby calculatinga QR factorisation3 of G0
A(k) :

�
Y (k) Z (k)

� �
U(k)

�

�
def= V (k)

�
U(k)

�

�
= G0

A(k) ; (3.1.13)

where V (k) 2 Rn� n is an orthonormal and U (k) 2 RnA � nA an upper triangular matrix;
Y (k) 2 Rn� nA and Z (k) 2 Rn� (n� nA ) are orthonormal matrices containing basesof the
rangeand the null spaceof GA(k) , respectively.

SubstitutingEq. (3.1.12) into (3.1.11) leadsto the following unconstrainedquadraticprob-
lem:

min
� x (k)

1
2 � x (k)

Z
0Z (k) 0H Z (k) � x (k)

Z + � x (k)
Z

0Z (k) 0
�
H x (k) + g

�
(3.1.14)

2SeeDe�nition A.4.
3SeeTheorem A.2.
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whosesolution is

� x (k)
Z = �

�
Z (k) 0H Z (k)

� � 1
Z (k) 0

�
H x (k) + g

�
(3.1.15a)

( ) R(k) 0R(k) � x (k)
Z = � Z (k) 0

�
H x (k) + g

�
: (3.1.15b)

ThereinR(k) 0R(k) is the Choleskydecomposition4 of the projectedHessianmatrix Z (k) 0H Z (k) ,
with an upper triangular matrix R (k) 2 R(n� nA )� (n� nA ) . Its existenceis guaranteedby the
positive de�nitenessof H and the fact that the basismatrix Z (k) has full column rank.
SinceR(k) is an upper triangular matrix, Eq. (3.1.15b) is easilysolvedvia a forward and a
backward substitution.

Then the associateddual solutionvector can be obtainedas

H � x (k) � G0
A(k) y

(k+1 )
A(k) = �

�
H x (k) + g

�
(3.1.16a)

( ) y(k+1 )
A(k) =

�
GA(k) G0

A(k)

� � 1 GA(k)

�
H Z (k) � x (k)

Z + H x (k) + g
�

; (3.1.16b)

( ) U(k)y(k+1 )
A(k) = Y (k)

�
H Z (k) � x (k)

Z + H x (k) + g
�

; (3.1.16c)

whereGA(k) G0
A(k) is invertiblebecauseGA(k) hasfull row rank. Eq. (3.1.15b) canbe solved

via a backward substitution as U (k) is an upper triangular matrix.

The null spacemethod usesEqs. (3.1.15b) and (3.1.16c) to calculatethe solution of the
KKT system(3.1.5); the matrix factorisationsare introducedin order to calculatea null
spacebasismatrix, whichgreatlysimpli�es the calculationof y (k+1 )

A(k) , and to avoidexplicitly
inverting the projected Hessianmatrix. Inverting the projected Hessianmatrix as well as
calculatingthe matrix factorisationsfrom scratchrequiresO(n3) oating-p oint operations.
So, the factorisations seemto be of limited use as they changewhenevera constraint
is addedto or deletedfrom the working set. But becauseof the simple nature of these
changes,update schemesfor Choleskyand QR decomposition weredescribed in [36], [44],
[21] which reducethe e�ort to obtain the changedfactorisationsto O(n2). Thus, alsothe
number of oating-p oint operationsfor solvingthe KKT systemonly grows quadraticallyin
the number of optimisationvariables. We will discussthesematrix updates in more detail
in Section4.3.3 as our online active set strategy is basedon the null spaceapproachand
alsomakesuseof them.

Two well-known implementationsof the null spacemethod for quadraticprogrammingare
qpsol [62] and qpopt [63]. We alsonote that the null spacemethod is applicableas long
as the projected Hessianis positive de�nite, which not necessarily requiresthe Hessian
matrix to be positive de�nite; an extensionto inde�nite quadratic programs is described
in [40]. Furthermore, since Z (k) is chosenorthonormal, the condition number5 of the
projected Hessianis the sameas that of the Hessianitself. This makes the null space
method numericallymore stablethan the rangespacemethod, which we presentnext.

4SeeTheorem A.1.
5SeeDe�nition A.1.
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3.1.2 Range Space Metho d

Assumingthe Hessianmatrix H to be positive de�nite, the KKT system(3.1.5) can also
be solvedby calculatingthe inverseof the KKT matrix explicitly:

�
H G0

A(k)

GA(k)
�

� �
H � 1 � H � 1G0

A(k) W (k)GA(k) H � 1 H � 1G0
A(k) W (k)

W (k)GA(k) H � 1 � W (k)

�
= Id ; (3.1.17)

whereW (k) def=
�

GA(k) H � 1G0
A(k)

� � 1
2 RnA � nA . Exploiting commonsubexpressionsleads

to the following solution formulaefor system(3.1.5):

y(k+1 )
A(k) = W (k)GA(k) H � 1

�
H x (k) + g

�
; (3.1.18a)

� x (k) = H � 1G0
A(k) y

(k+1 )
A(k) � H � 1

�
H x (k) + g

�
(3.1.18b)

=
�

H � 1G0
A(k) W (k)GA(k) H � 1 � H � 1

� �
H x (k) + g

�
: (3.1.18c)

This representationof the solution is called range spaceapproach becausethe Hessian
matrix is projected to the rangespaceof the active constraints. This form has the disad-
vantagethat the conditionnumber of GA(k) H � 1G0

A(k) is that of the Hessianmultiplied with
the squared condition number of G0

A(k) , which rendersthe rangespacemethod inappropri-
ate if the active constraintsmatrix is ill-conditioned;the sameholdsif the Hessianmatrix
H is nearly singular.
On the other hand,this approachbecomesattractive if the Hessianmatrix is easyto invert
and the number of constraintsin the working set remainssmall. This is in contrast to the
null spaceapproach wherethe dimensionof the projected HessianZ (k) 0H Z (k) , and thus
the number of correpondinglinear algebra operations,decreaseswith the number of active
constraints.

Eqs. (3.1.18) are not directly applied to calculatethe primal step direction and the dual
solutionvector, instead,asin the null spacemethod, matrix factorisationsareused.[37] pro-
poseda Choleskydecomposition of H

H = R0R ; R 2 Rn� n upper triangular; (3.1.19)

and a QR factorisation of GA(k) R� 1. Thesefactorisationsare updated in eachiteration as
explainedin [36], [44], [21].

3.2 Dual Active Set Metho ds

In this section we give a short descriptionof dual active set methods which have some
similarities to our proposedonlineactive set strategy. While primal active set solversstart
at a primal feasiblepoint andproducea sequenceof primal feasibleiterates,dual activeset
methods maintain dual feasibility until an iterate becomesalsoprimal feasible,and hence
optimal. This approach is equivalentto solvingthe dual of the quadraticprogramQPdual

(seeDe�nition 2.8) with a primal active set solver(cp. [34]). We presentthe famousdual
active set method by Goldfarb and Idnani [50], [45] which is applicableto strictly convex
quadraticprograms.For an extensionto convexQPs we refer to [16].
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One motivation for developingdual QP methods is the trivial but important observation
that the pair

�
x(0) ; y(0) � def=

�
� H � 1g;

�

�
2 F dual (3.2.1)

can serveas a dual feasiblestarting point for solvingQPdual (with an empty working set
A(0) ). Thus, besidesthis computationallycheapmatrix-vector calculation,no PhaseI is
necessary!

In the following we dividethe dual vector y(k) into an activepart y(k)
A(k) and an inactivepart

y(k)
I (k) , whereI (k) def= f 1; : : : ; mg n A(k) is the working set complement(note that I (k) may

contain currently violatedconstraints). After obtaining
�
x(0) ; y(0)

A(0)

�
= x (0) , it is checked if

this point is alsoprimal feasible,i.e. if Gx (0) � b is satis�ed. In this casethe unconstrained
minimum x (0) is alreadythe optimal solution. Otherwisea violated(primal) constraint,say
G0

qx(0) < bq with 1 � q � m, is selectedwhichshallbe satis�ed (with equality) by the next

iterate
�
x(1) ; y(1)

A(1)

�
. More generally, at iteration k we want to perform a step in the primal

and the dual variablessuchthat a violatedconstraint q =2 A (k) becomesactive, and hence
feasible,at iteration k + 1:

x(k+1 ) def= x (k) + � � x (k) ; (3.2.2a)

y(k+1 )
A(k +1 ) [f qg

def= P

0

@

0

@
y(k)

A(k)

y(k)
q

1

A + �

 
� y(k)

A(k)

1

! 1

A (3.2.2b)

for an arbitrary k 2 N [ f 0g and a �xed � 2 R� 0|the de�nition of the next working set
A(k+1 ) and the projection matrix P will be introducedsoon. Note that the component
of the dual vector correponding to the qth constraint y (k)

q does not need to be zero as
constraintq is not feasible.The step directionsare determinedas follows:

� x (k) def=
�

H � 1G0
A(k) W (k)GA(k) H � 1 � H � 1

�
G0

q ; (3.2.3a)

� y(k)
A(k)

def= � W (k)GA(k) H � 1G0
q : (3.2.3b)

Therein � x (k) is chosensuchthat all (primal) constraintsin the working set A (k) remain
active, cf. Eqs. (3.1.18) of the primal range-spacemethod. The primal-dual step length
� shouldbe the minimum step length in the primal variablessuchthat the qth constraint
becomesfeasible(i.e. active); on the other hand � must be small enoughto maintain
feasibility of the dual variables:

� prim def=

8
<

:

1 if � x (k) =
�

G0
qx (k) � bq

G0
q � x (k) else

; (3.2.4a)

� dual def= min
i 2 A(k)

(

�
y(k)

A(k)

� y(k)
i

�
�
� � y(k)

i < 0

)

; (3.2.4b)

� def= min
n

� prim ; � dual
o

; (3.2.4c)

where the minimum over an empty set is de�ned as 1 , which is greater than any real
number.
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If the primal step direction � x (k) is not zero a primal-dual step is taken, trying to make
the qth constraintactive while maintainingdual feasibility. Two casescan occur:

1. � = � prim : A full step in the primal variables can be taken, q is added to the

working set. This meansthat A (k+1 ) def= A(k) [ f qg and P def= IdjA(k +1 ) j is chosenin

Eq. (3.2.2b).

2. � = � dual : Only a partial step can be taken as the blocking constraint

j def= argmin
i 2 A(k)

(

�
y(k)

A(k)

� y(k)
i

�
�
� � y(k)

i < 0

)

(3.2.5)

must be dropped from the working set in order to keep dual feasibility; constraint

q remains infeasible. Thus, in Eq. (3.2.2b), A(k+1 ) def= A(k) n f j g is de�ned and

P def= Pj deletescomponent y(k)
j from the right hand sidevector (i.e. Pj equalsthe

�
�A(k) + 1

�
� �

�
�A(k) + 1

�
� identity matrix from which onerow is deleted).

If the primal step direction � x (k) is zero the qth constraint cannot be satis�ed while all
other (primal) constraintsin A (k) remainactive. Thus, no primal step is taken in this case.
Instead,providedthat � dual < 1 , a partial dual step is performed which annihilatesone
component of � y(k+1 )

A(k) and allows to drop the corresponding active constraint from the

working set (A(k+1 ) and P def= Pj as in the secondcaseabove). If sucha constraint does
not exist, i.e. � = � dual = 1 , the quadraticprogramis infeasible.

After a partial step new step directions� x (k+1 ) , � y(k+1 )
A(k +1 ) are determinedfor the updated

working set A(k+1 ) and constraintq is tried to madeactive, i.e. feasible,again. As soon as
a full stepcanbe taken (if the quadraticprogramis feasiblethis must occur if the working
set is empty, at the latest), a newviolatedconstraintq is chosenand the wholeprocedure
is repeated. If no violated constraint can be found the primal and dual feasiblesolution�
xopt ; yopt

�
of QPdual is found, which alsodeliversthe solution xopt of the corresponding

QP. We formalisethis dual active set method in Algorithm 3.2 (cf. [45]).

It should be mentioned that a violated constraint q which becameactive may become
inactive and afterwards violated again; the choiceof the step directionsonly ensuresthat
active constraints remain active. But since it can be shown that the (primal) objective
function valuestrictly decreasesin everyiteration|p rovidedthat no cycling due to primal
degeneracyoccurs,seepage31|�nite termination of Algorithm 3.2 is guaranteed[45].

The step directioncomputationsin Eqs.(3.2.3) are very similar to that of the range-space
method (cf. Section3.1.2) andsimilar matrix factorisationsandformulaefor matrix updates
after a working set changeexist. Therefore, also recallingthat there is no necessity of a
phaseI, dual methods can be implementedrather e�ciently .

A recent implementationparticularly suited for large-scale,sparse Hessianand constraint
matrices is QPSchur [3]. It is basedon a third possibility for solving the KKT sys-
tem (3.1.2), the so-calledSchurcomplement(seee.g. [41]).
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Chapter 3. Existing Metho ds for Solving Quadratic Programs

Algorithm 3.2 (dual active set metho d)

input: strictly convexquadraticprogramQP

output: optimal solutionxopt of QP and working set A as de�nied in Theorem 2.5
(or messagethat QP is infeasible)

(1) Setk  0, obtain feasiblestarting point
�
x(0) ; y(0)

� def=
�
� H � 1g;

�

�
andcorrespond-

ing working set A(0) def= ; .

(2) Choosea violatedconstraint q 2
�

i =2 A(k)
�
� G0

i x
(k) < bi

	
. If sucha constraint does

not exist the optimal solution is found: set xopt  x (k) and A  A(k) . stop!

(3) Calculateprimal and dual step directions� x (k) and � y(k)
A(k) from Eqs.(3.2.3).

(4) Computestep length � (and � prim , � dual ) via Eqs.(3.2.4).

(5) if � x (k) =
�

:

if � dual = 1 :

stop (QP infeasible)!

else (� dual < 1 )

Removeblocking constraint j = argmin
i 2 A(k)

�
� y(k)

� y(k)
i

�
�
� � y(k)

i < 0
�

from working

set, i.e. A(k+1 )  A(k) n f j g.

Set x (k+1 )  x (k) , y(k+1 )
A(k +1 ) [f qg

 Pj

��
y(k)

A(k)

y(k)
q

�
+ �

�
� y

A(k)

1

� �

as well as k  k + 1 and continuewith step (3).

(6) if � = � prim :

Add the formerlyviolatedconstraintq to the working set, i.e. A (k+1 )  A(k) [ f qg.

Set x (k+1 )  x (k) + � � x (k) , y(k+1 )
A(k +1 )  

�
y(k)

A(k)

y(k)
q

�
+ �

�
� y

A(k)
1

�

as well as k  k + 1 and continuewith step (2).

else (� = � dual )

Removeblocking constraint j = argmin
i 2 A(k)

�
� y(k)

� y(k)
i

�
�
� � y(k)

i < 0
�

from working

set, i.e. A(k+1 )  A(k) n f j g.

Set x (k+1 )  x (k) , y(k+1 )
A(k +1 ) [f qg

 Pj

� �
y(k)

A(k)

y(k)
q

�
+ �

�
� y

A(k)
1

� �

as well as k  k + 1 and continuewith step (3).
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3.3 Interio r Point Metho ds

So-calledprimal-dual interior point methods haveemergedasa strongcompetitor to active
set methods. Initially developed for linear programming, they were extendedto convex
quadraticprogrammingand to generalnonlinear programmingafterwards. Sincea detailed
descriptionis beyondthe scope of this thesiswe referto [91] for an overview.The main idea
can be summarised as follows: �rst observethat the KKT optimality conditions(2.3.13)
imply that a primal-dualpair

�
x(k) ; y(k)

�
, k � 0, is optimal if and only if

H x (k) � G0y(k) = � g ; (3.3.1a)

Gx (k) � b; (3.3.1b)

y(k) �
�

; (3.3.1c)

y(k)
i

�
Gx (k) � b

�

i
= 0 8 i 2 f 1; : : : ; mg: (3.3.1d)

Interior-point methods relax the so-calledcomplementary slacknesscondition (3.3.1d) to

y(k)
i

�
Gx (k) � b

�

i
= � (k) 8 i 2 f 1; : : : ; mg (3.3.1d')

for some� (k) 2 R> 0 and producea sequenceof iterates
�
x(k) ; y(k)

�
which strictly satisfy

Eqs. (3.3.1b) and (3.3.1c). The optimal primal-dual solution is �nally found by ensuring
� (k) ! 0 for k ! 1 .

One famousimplementationfor convexquadratic programsis LOQO[81]; another one for
generalNLPs is Ipopt [82]. For interior point methods, a polynomialruntime guarantee
can be givenand they possesrelativelyconstantcomputationaldemands.But they su�er
the drawback that no e�cient warm start techniquesexist so far. \F or large QPs with
many active inequality constraints the interior point approach is expected to require far
fewer iterations than an active set method to arrive at the solution. However,eachof the
interior points iterations is many times more expensivethan the iterationsperformed in an
active set method." [4].
Interior-point methods havealso been proposedfor use in model predictive control [73].
Comparisionswith activesetsolversindicatethat it dependson the problem'scharacteristics
which method shouldbe preferred[5], [4].
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Chapter 4

An Online Active Set Strategy for
Mo del Predictive Control

4.1 Main Idea

Inspiredby the explicit solutionapproach,but aimingto avoidits prohibitiveo�ine compu-
tational cost, we proposean onlineactive set strategy for usein model predictivecontrol.
It buildson the expectation that the active set doesnot changemuch from onequadratic
program to the next, but is di�erent from conventionalwarm starting techniques. For
transition from the old QP to a new one, we propose to move on a straight line in the
parameter space,i.e., in the set P. As this set is convex,cf. Theorem 2.6, we can be
surethat all QPson this line remainfeasibleand can be solved.As long as we stay in one
critical region, the QP solutiondependsa�nely on w0. If we haveto crossthe boundaries
of critical regionsduring our way on the line, which is illustrated in Fig. 4.1, Theorem 2.8
ensuresthat the solutioncan be continuouslycontinued.

Let us assumethat we havesolveda parametric quadratic program of the form (2.3.15)
for a certain initial state w0 and (after onesamplingtime) want to solveit againfor a new
initial state vector wnew

0 with unknown solution
�
xopt

new; yopt
new

�
. By setting

� w0
def= wnew

0 � w0 ; (4.1.1a)

� g def= g(wnew
0 ) � g(w0) = F 0� w0 ; (4.1.1b)

� b def= b(wnew
0 ) � b(w0) = E � w0 ; (4.1.1c)

we can re-parameterisegradientand right handsidevector as follows:

~w0 : [0; 1] ! Rnx ; ~w0(� ) def= w0 + � � w0 ; (4.1.2a)

~g: [0; 1] ! Rn ; ~g(� ) def= g(w0) + � � g ; (4.1.2b)

~b: [0; 1] ! Rm ; ~b(� ) def= b(w0) + � � b: (4.1.2c)

This leadsto a re-parameterisedform of QP(w0):

QP(� ) : min
x

1
2x0H x + x0~g(� ) (4.1.3a)

s: t : Gx � ~b(� ) : (4.1.3b)
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Chapter 4. An Online Active Set Strategy for Mo del Predictive Control

According to our assumption,we know the solution xopt and yopt (and a corresponding
working set A) of QP(w0) and want to solveQP(wnew

0 ). The basic idea of our online
active set strategy, which has previouslybeen proposedby [11] in a di�erent context, is
to move from w0 towards wnew

0 , and thus from
�
xopt ; yopt

�
towards

�
xopt

new; yopt
new

�
, while

keepingprimal and dual feasibility (i.e. optimality) for all intermediatepoints. This means
that we are looking for homotopies

~xopt : [0; 1] ! Rn ; ~xopt (0) = xopt ; ~xopt (1) = xopt
new ; (4.1.4a)

~yopt : [0; 1] ! Rm ; ~yopt (0) = yopt ; ~yopt (1) = yopt
new ; (4.1.4b)

~A : [0; 1] !
� f 1;:::;mg; ~A(0) = A; ~A(� ) � f 1; : : : ; mg ; (4.1.4c)

~I : [0; 1] !
� f 1;:::;mg; ~I (� ) def= f 1; : : : ; mg n ~A(� ) ; (4.1.4d)

which satisfy the conditionsof Theorem 2.5 at everypoint � 2 [0; 1]:

 
H G0

~A(� )

G~A(� )
�

!  
~xopt (� )

� ~yopt
~A(� )

(� )

!

=

 
� ~g(� )

~b~A(� ) (� )

!

; (4.1.5a)

G~I (� ) ~xopt (� ) � b~I(� ) (� ) ; (4.1.5b)

~yopt
~I (� )

(� ) =
�

; (4.1.5c)

~yopt
~A(� )

(� ) �
�

: (4.1.5d)

This impliesthat ~xopt (� ) and ~yopt (� ) are piecewiselinear functionsandthat ~xopt (� ) is also
continuous, as shown in Theorem 2.8. Thus, locally we must havea relation of the form

~xopt (� ) def= xopt + � � xopt ; (4.1.6a)

~yopt
~A(� )

def= yopt
A + � � yopt

A ; (4.1.6b)

which holdsfor su�ciently small � 2 [0; � max ], � max 2 R� 0.

Becausewe start from an optimal solutionwe know that conditions(4.1.5) are satis�ed at
� = 0. Therefore equality (4.1.5a) is satis�ed for all � 2 [0; � max ] if and only if

�
H G0

A
GA

�

� �
� xopt

� � yopt
A

�
=

�
� � g
� bA

�
(4.1.7)

holds. Becauseit will be ensuredthat all rows of GA are linearly independent,Eq. (4.1.7)
hasa uniquesolution,as shown in Lemma2.2.
The active set stays constant as long as no previouslyinactive constraint becomesactive
(cf. (4.1.5b)), i.e.

G0
i

�
xopt + � � xopt � = bi (w0) + � � bi (4.1.8)

for somei 2 ~I (0), and no previouslyactive constraintbecomesinactive(cf. (4.1.5d)), i.e.

yopt
i + � � yi = 0 (4.1.9)
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PSfragreplacements w0

wnew
0

Figure4.1: Homotopy paths from oneQP to the next acrossmultiple critical regions.

for somei 2 ~A(0). Therefore, we determinethe maximumpossiblehomotopy step length
� max as follows1:

� prim
max

def= min
i 2~I (0)

�
bi (w0) � G0

i x
opt

G0
i � xopt � � bi

�
�
� G0

i � xopt < � bi

�
2 R� 0 ; (4.1.10a)

� dual
max

def= min
i 2 ~A(0)

(

�
yopt

i

� yi

�
�
� � yi < 0

)

2 R� 0 ; (4.1.10b)

� max
def= min

n
1; � prim

max ; � dual
max

o
2 [0; 1] : (4.1.10c)

This choiceof � max ensuresthat conditions(4.1.5b) and(4.1.5d) remainful�lled. Moreover,

if we de�ne � yopt
I

def=
�

then alsoequality (4.1.5c) holdsfor all � 2 [0; � max ].

Our onlineactiveset strategyis summarisedin Algorithm 4.1 (wherethe homotopy interval
[0; 1] is implicitly rescaledafter each working set change, for notational simplicity and
implementationelegance).

1Again, the minimum over an empty set is de�ned as 1 .
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Algorithm 4.1 (online active set strategy)

input: data and solution
�
xopt ; yopt

�
of QP(w0),

correspondingworking set A,
new parameterwnew

0 2 P

output: solutionpair
�

xopt
new; yopt

new

�
of QP(wnew

0 ),

correspondingworking set Anew

(1) Calculate� w0, � g and � b via Eqs.(4.1.1).

(2) Calculateprimal and dual step directions� xopt and � yopt via Eq. (4.1.7).

(3) Determinemaximumhomotopy step length � max from Eqs.(4.1.10).

(4) Obtain optimal solution of QP( ~w0):

(a) ~w0  w0 + � max � w0,

(b) ~xopt  xopt + � max � xopt ,

(c) ~yopt  yopt + � max � yopt .

(5) if � max = 1:

Optimal solution of QP(wnew
0 ) found.

Set xopt
new  ~xopt , yopt

new  ~yopt and Anew  A. stop!

(6) if � max = � dual
max :

Removea dual blocking constraint j 2 A
�

� dual
max = �

yopt
j

� yj

�
from working set,

i.e. A  A n f j g.

elseif � max = � prim
max :

Add a primal blocking constraint j
�

� prim
max =

bj (w0 )� G0
j xopt

G0
j � xopt � � bj

�
to working set,

i.e. A  A [ f j g, while ensuringlinear independence(seeSection4.5.1).

(7) Set w0  ~w0, xopt  ~xopt , yopt  ~yopt and continuewith step (1).
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4.2 Real-Time Variant

One advantageof our online active set strategy is that it producesa sequenceof optimal
solutions for QPs on the homotopy path. Thus, it is possibleto interrupt this sequence
after everypartial stepandstart a newhomotopy from the current iterate towards the next
QP. In particular, no PhaseI as in standard activeset methods is neccessary becauseevery
iterate is optimal and therefore feasible.Of course,if we interrupt the homotopy before the
solution is reachedwe may stop at an infeasiblepoint with respect to the QP we want to
solve.
In a real-time scenario one can try to �nd the optimal solution of the current QP within
a given samplingtime. But if too many working set changesare nessesary to get from
the solutionof the old QP to that of the current QP onecan just stop the solution of the
currentQP andstart a newhomotopy towardsthe solutionof the newone. If the solutionof
the newQP requiresfewer working set changesthan computablewithin the givensampling
time the online active set strategymay make up for someunperformed changesfrom the
last QP. This situation is illustrated in Figure4.2 whereinonly two working set changesare
allowed per QP.
The computationale�o rt per working set changeis known rather exactly, seeSection4.6.1.
So, if oneobtainsan estimatefor the number of optimal active set changesfrom one QP
to the next, e.g. from closed-loop simulations,it is easyto estimatethe possiblesampling
time length.

PSfragreplacements w0

wnew
0

Figure4.2: Homotopy paths(solid) from oneQP to the nextwith limited numberof working
set changes.

Note that our online active set strategy has somefeaturessimilar to the dual active set
method, seeSection3.2, andits adaptationto fast MPC [84]: both allow QP warm starting
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without a phaseI. Wheniterationsare terminatedprematurely, however,our method solves
a QP that is exactlyknown to lie on the straight linebetweenQP(w0) andQP(wnew

0 ), while
the dual activesetmethod deliversin eachiteration the solutionto an unknown primal QP.
Using the real-time variant of our online active set strategy, it is reasonableto assumea
greaterprobability (compared with the dual approach) of reachingat least the con�dence
regionof the measuredinitial state w0.

4.3 Implementation Details

4.3.1 Bounds and Constraints

Insteadof the generalformulation (2.3.15), our onlineactiveset strategywas implemented
for QPs of the following form:

min
x

1
2x0H x + x0g(w0) (4.3.1a)

s: t : bB (w0) � x � bB (w0) ; (4.3.1b)

bC(w0) � Gx � bC(w0) ; (4.3.1c)

where G 2 Rm� n , bB (w0); bB (w0) 2 Rn and bC(w0); bC(w0) 2 Rm for all w0 2 P.
This distinction between constraints and bounds seemsadequatebecausebounds arise
naturally in the context of model predictive control and special treatment of them can
lead to substantialcomputionalsavingsas described in [39]. SeealsoSection4.6.1 where
complexity issuesare addressed.

Similar to De�nition 2.9 we give the following

De�nition 4.1 (free and �xed variables): Let a feasiblequadratic program of the form
(4.3.1) be given. A variable x i , 1 � i � n, is called �xed (and the corresponding bound
active) �x 2 F i�

�x i = bB (w0) i _ �x i = bB (w0) i

holdsand free otherwise.The (disjoint) indexsets

F( �x) def=
�

i 2 f 1; : : : ; ng j �x i free
	

;

X( �x) def=
�

i 2 f 1; : : : ; ng j �x i �xed
	

are called set of free variablesand set of �xed variables, respectively. �

De�nition 4.2 (working set of variables): Let a feasiblequadraticprogramof the form
(4.3.1) be given. Then arbitrary indexsets

F � f 1; : : : ; ng ;

X def= f 1; : : : ; ng n F

are calledworking set!of freevariablesand working set!of �xed variables, respectively. Their
cardinalitiesare denotedby

nF
def= jFj ;

nX
def= jXj : �
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4.3. Implementation Details

For everyfeasiblepoint x of the QP (4.3.1) there exist correspondingworking setsof free
and �xed variablesF � F(x) and X as well as a working set A � A(x). That meansthat
we can rearrangethe componentsof x suchthat

�
�

IdnX

CF CX

� �
xF

xX

�
=

�
bX

bA

�
(4.3.2)

is valid, where C def= GA and bX 2 RnX and bA 2 RnA contain suitable subsetsof the
componentsof bB (w0)X , bB (w0)X and bC(w0)A , bC(w0)A , respectively. We call C active
constraints matrix and the left hand side matrix of Eq. (4.3.2) augmentedactive con-
straints matrix. This representationof �xed variablesand active constraintswill be useful
in Section4.3.3 whenmatrix updatesare to be described.

4.3.2 Null Space Approach

Our implementationis basedon the null spaceapproach (cf. Section 3.1.1) for solving
the KKT system(4.1.7). For this choiceseveralreasonswere decisive:�rst, as explained
in Chapter3, the null spacemethod is particularly numericallystable and, in contrast to
the rangespacemethod and the dual approach, no positive de�nite Hessianmatrix is re-
quired; instead,a positive de�nite projected Hessianmatrix is su�cient which facilitates
extensionsfor dealingwith positive semi-de�nite Hessianmatrices(including linear objec-
tive functions). Furthermore, computationalsavingsdue to the distinction of boundsand
constraints,which seemswell justi�ed within MPC problems,are \most readilyachievedin
null spacemethods." [34] Finally, whenusingthe null spaceapproachthe more boundsand
constraintsare active the lesscomputationale�o rt is requiredper working set change.So,
the proposedonlineactiveset strategytakesthe most computationaltime per working set
changeif the controlledsystemis near the steady-stateand almost no active set changes
occur. If, e.g. after a strong pertubation, the controlledsystemis far from its steady-state
and typically many optimal active set changesare neccessary our online active set strat-
egy can perform more working set changesper samplingtime than near the steady-state.
Section4.6.1 illustratesthat a signi�cant amount of computationale�o rt is savedif many
boundsbecomeactive.

The distinction of boundsand constraintsmakes necessary adaptationsof the matrix de-
compositionsand of the way the KKT system(4.1.7) is solvedin order to determinethe
primal-dualstepdirection. Therefore, both matricesare subdividedinto parts corresponding
to free and �xed variables,respectively:

�
CF CX

�
�

xF

xX

�
def= Cx ; (4.3.3a)

�
xF

xX

� 0�
HF HM

H 0
M HX

� �
xF

xX

�
def= x0H x ; (4.3.3b)

whereHF 2 RnF� nF, HX 2 RnX � nX , HM 2 RnF� nX and CF 2 RnA � nF, CX 2 RnA � nX .
Accordingly, not the whole active constraint matrix C is decomposedbut only that part
which corresponds to the free variablesF. Insteadof the commonQR decomposition a
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variant calledTQ factorisation, as proposedin [39], is maintainedduring the iterations:

C0
F = V

�
U

�

�
(4.3.4a)

( ) CF =
�

U
�

� 0

V 0 =
�

U
�

� 0

Id r
nF

Id r
nF

V 0; Id r
nF

def=

0

B
@

1

::
:

1

1

C
A (4.3.4b)

( ) CF =
�

�

T
�

Q0
F (4.3.4c)

whereV 2 RnF� nF is an orthonormal and U 2 RnA � nA an upper triangular matrix. Thus,

T def= U0Id r
nA

is a reverselower triangular matrix and QF
def= Id r

nF
V is orthonormal because

both factors Id r
nF

and V are. Matrix QF is subdividedinto

�
ZF YF

� def= QF (4.3.5)

whereZF 2 RnF� (nF� nA ) containsa basisof the null spacerestrictedto free variablesand
YF 2 RnF� nA is formed by rangespacebasisvectors of CF. This leadsto the following

De�nition 4.3 (restricted null space): Let QF be an orthonormal matrix as de�ned in
Eqs.(4.3.4) and let ZF denotethe (nF � nA) leftmost columnsof QF. Then

im ZF � RnF

is called restrictednull spaceof the active constraints. Its dimensionis denotedby

nZ
def= nF � nA : �

A Choleskydecomposition is only calculatedfor the Hessianprojectedto the restrictednull
spaceof CF:

R0R def= Z 0
FHFZF ; (4.3.6)

whereR 2 RnZ � nZ is an upper triangular matrix.

After the adaptationof the matrix decompositionswe now havea closerlook at the way the
primal-dualstepdirection is determined.To this endthe KKT system(4.1.7) is subdivided
into free and �xed variables:
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B
B
@

HF HM
�

C0
F

H 0
M HX IdnX C0

X
�

IdnX

� �

CF CX
� �

1

C
C
A

0

B
B
@

� xF

� xX

� yX

� yA

1

C
C
A =

0

B
B
@

� � gF

� � gX

� bX

� bA

1

C
C
A ; (4.3.7)

where � xF 2 RnF and � xX 2 RnX denote the primal step direction of free and �xed
variables,respectively;� yX 2 RnX and � yA 2 RnA denotethe dual stepdirectionof active
boundsand constraints,respectively;� gF 2 RnF and � gX 2 RnX denotethe gradientstep
direction for free and �xed variables,respectively; � bX 2 RnX denotesthe step direction
of the active bounds vectors2 and � bA 2 RnA denotesthe step direction of the active
constraintsvectors2.

2A suitable subsetof the lower and upper (constraints') boundsvectors, to be more precise.
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Then we usethe orthonormal matrix QF to perform a coordinate transformation: with the
de�nition

S def=

0

B
B
B
B
B
@

Z 0
F

� � �

Y 0
F

� � �

�

IdnX

� �

� �

IdnX

�

� � �

IdnA

1

C
C
C
C
C
A

2 Rn+ nX+ nA (4.3.8)

we obtain

S
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B
B
@

HF HM �

C0
F

H 0
M HX Idn X C0

X

�

Idn X � �

CF CX � �

1

C
C
A S0 =

0

B
B
B
B
@

Z 0
FHFZF Z 0

FHFYF Z 0
FHM �

Z 0
FC0

F
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FHFZF Y 0
FHFYF Y 0

FHM �

Y 0
FC0

F
H 0

M ZF H 0
M YF HX Idn X C0

X

� �

Idn X � �

CFZF CFYF CX � �

1

C
C
C
C
A

; (4.3.9a)
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0
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@

� xF

� xX

� yX

� yA

1

C
C
A ; (4.3.9b)
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@
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1

C
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A : (4.3.9c)

This leadsto the following linear systemfor determinationof the primal-dualstepdirections
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R0R Z 0
FHFYF Z 0
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Y 0
FHFZF Y 0
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1

C
C
C
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(4.3.10)

with the following solutions:

� xX = � bX ; (4.3.11a)

� xY
F = T � 1 (� bA � CX � xX) ; (4.3.11b)

� xZ
F = � R� 1(R0)� 1 �

� gZ
F + Z 0

F

�
HFYF� xY

F + HM � xX
� �

; (4.3.11c)

� yA = (T0)� 1 �
� gY

F + Y 0
F (HF� xF + HM � xX)

�
; (4.3.11d)

� yX = H 0
M � xF + HX� xX + C0

X � yA + � gX ; (4.3.11e)

with � xF
def= ZF� xZ

F + YF� xY
F : (4.3.11f)

Thesecalculationscan be simpli�ed by exploiting commonsubexpressions. Moreover, it
is possibleto acceleratethe calculation if the currently active boundsbX or constraints'
boundsbA (cf. Eq. (4.3.2)) do not dependon w0, and thus � bX =

�

or � bA =
�

.
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4.3.3 Matrix Updates

Until the solutionanda correspondingoptimal working set is found, the currentworking set
must be modi�ed by addingor removinga boundor a constraintin eachiteration. Further-
more, decompositionsof the projectedHessianmatrix Z 0

FH ZF and the active constraints
matrix CF haveto be maintainedin order to e�ciently computenewstepdirections.How-
ever, re-computationin eachiteration would foil this bene�t becausecalculationsof both
the Choleskydecomposition as well as the TQ factorisation requireO(n3) oating-p oint
operations. Instead,becausea singleworking set changea�ects thesedecompositions in
a rather simpleway, it is possibleto reducethe e�ort to O(n2) oating-p oint operations
(per iteration) by usingso-calledmatrix updates.
In this subsection,we will describe the matrix updatesusedin our implementationwhich
are specially tailored to the context whereboundsand constraintsare distinguished.The
presentationis basedon [39], complexity issuesare examinedin Section 4.6.1. We start
with a brief summary of Givensplanerotations which are a necessary prerequisitefor the
proposedmatrix updates.

Givens Plane Rotations

A Givensplanerotation can be expressedas a matrix of the following form (cf. [43] and
e.g. [46]):

Oi;j (' ) def=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1
:: :

1
cos' sin '

1
: : :

1
� sin ' cos'

1
: : :

1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; ' 2 [0; 2� ) : (4.3.12)

Herein' canbe chosenis sucha way that the j -th componentof a vector v 2 Rn becomes
zeroif v is premultipliedby Oi;j (' ):

�
Oi;j (' )v

�
k =

8
>><

>>:

vi cos' + vj sin ' if k = i

� vi sin ' + vj cos' if k = j

vk else

(4.3.13)

which impliesthat
�
Oi;j (' )v

�
j = 0 ( ) cos' =

viq
v2

i + v2
j

^ sin ' =
vjq

v2
i + v2

j

: (4.3.14)

By de�nition everymatrix Oi;j (' ) is orthonormal with determinant one. Therefore pre-
multiplication by Oi;j (' ) can be interpreted as a counterclockwise rotation in the (i; j )
coordinate plane,which explainsthe name.
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Successiveapplicationof Givensplane rotations allows to introducecertain zero patterns
into a vector or, especially, another matrix. For exampleit is possibleto transform an
arbitrary matrix into an upper triangular matrix. While this canalsobe done,evenat lower
computationalcosts,via Gaussianelimination, a very important advantageof Givensplane
rotations is that they are particularly numericallystablebecauseof their orthonormality.
In practice, formulae di�erent from those given in (4.3.14) for computation of cos' and
sin ' are used in order to prevent possibleoverow [21]. Furthermore, computational
savingsare possiblewhen multiplying Oi;j (' ) with a matrix. Of course,from (4.3.13) it
is evident that only two rows (or columns,if O i;j (' ) is multiplied from the right) haveto
be involvedinto the calculation. But moreover, there are ways to reducethe number of
multiplicationsneccessary per step from four, as in (4.3.13), to three or evento two|so-
called fast plane rotations [47], [1]. However, this comesat the expenseof considerable
overheadwhich can, evenin the caseof large matrices,outweigh the bene�t [48]. In our
implementationwe tried (4.3.13), which requiresfour multiplications and two additions,
and a variant described in [21], which requiresthree multiplications and three additions,
and found both almost equallye�cient.

Matrix Permutations

Whenapplyingmatrix updatesit is sometimeshelpfulto permutethe vector of freevariables
xF which resultsin rearrangementsof rows or columnsof the involvedmatrices.Therefore,
before descriptionsof the actual matrix updates are given, we show the mathematical
justi�cation of thesepermutations:
Permutation of the vector of free variablesxF is equivalentto multiplying it with a non-
singular square matrix P:

x̂F
def= PxF ; where P 2 f 0; 1gn� n ; P0P = Id : (4.3.15)

This leadsto the following expressions:

CFxF = CFP0PxF = ĈFx̂F; (4.3.16a)

CFQF = CFP0PQF = ĈFQ̂F; (4.3.16b)

Z 0
FHFZF = Z 0

FP0PHFP0PZF = Ẑ 0
FĤFẐF; (4.3.16c)

where ĈF
def= CFP0; Q̂F

def= PQF; ẐF
def= PZF; ĤF

def= PHFP0: (4.3.16d)

This meansthat we haveto rearrangethe columnsof CF, the rows of QF and ZF (and YF)
aswell asthe rows and the columsof H F in the sameway asthe componentsof vector xF;
the matricesR andT are not a�ected. Becausethe resultingtransformedQP is completely
equivalentto the original onewe omit matrix P from now on.
Thesepermutationsare implementedby meansof an index list of free variableswhich is
realisedasa doublelinked list. Elementsof xF andthe mentionedmatricesare accessedvia
this indexlist whichis necessary anyway if explicit re-storing whileworking with submatrices
shall be avoided. The latter is also the reasonwhy an index list of active constraintsis
held, too. It is obviousthat the order of (active) constraintswithin a QP is arbitrary.
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When illustrating certain matrix modi�cation processesthe following symbols are used:
� denotesa non-zeroelementthat is not modi�ed,
� denotesa non-zeroelementthat is modi�ed,
� denotesa previouslynon-zeroelementthat is annihilated,
� denotesa previouslyzeroelementthat is �lled in,
� denotesa zeroelementthat is not modi�ed (sameas blank),
� denotesan elementof a row or a columnto be removedfrom a matrix.

Adding a Constraint to Working Set

First, we considerthe casewhen a constraint is addedto the working set. According to
the above-mentionedremarks on matrix permutationswe assumewithout lossof generality
that the newly active constraint is addedas the last row of C. Thus, the row number of
C (= GA), the column number of YF and the dimensionof T increaseby one while the
columnnumber of ZF decreasesby one. Let

c0
new =

�
cnew

F
0 cnew

X
0�

2 Rn ; (4.3.17a)

t0
new =

�
tnew
Z

0 tnew
Y

0� def= cnew
F

0QF 2 RnF (4.3.17b)

denote the row of C corresponding to the newly active constraint (again, optimisation
variablesare permutedproperly) andthe newlast row of T, respectively. Then the following
equationholds:

Cnew
F QF =

�
CF

cnew
F

0

�
QF =

�
�

T
tnew
Z

0 tnew
Y

0

�
: (4.3.18)

In order to transform the right handsideof (4.3.18) into the reverselower triangalurmatrix
Tnew a sequenceof Givensplanerotations is appliedfrom the right. For the casenF = 7
and nA = 3 (nnew

A = 4) this can be illustrated as follows:
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Usingthe notation introducedin Eq. (4.3.12) this transformation formally means

Tnew
def=

�
�

T
tnew
Z

0 tnew
Y

0

�
� O2;1(' 1) � : : : � OnZ ;nZ � 1(' nZ � 1) (4.3.19a)

=
�

�

0 T
�

� new tnew
Y

0

�
; � new 6= 0;

Qnew
F

def= QF � O2;1(' 1) � : : : � OnZ ;nZ � 1(' nZ � 1) : (4.3.19b)

Note that Qnew
F is alsoan orthonormal matrix sinceall Givensplanerotation matricesare

orthonormal. By de�nition, the null spacebasismatrix ZF is transformed the sameway as
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QF in Eq. (4.3.19b). Note, however,that the rightmostcolumnof ZF becomesthe leftmost
columnof Y new

F sincethe dimensionof the null spacedecreasedby onewhenaddinga new
constraint to the working set3. The transformation of ZF alsoa�ects the Choleskyfactor
of the reducedHessianmatrix Z 0

FH ZF in the following way:
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Again, this illustration depictsthe casenF = 7, nA = 3 (nnew
A = 4) andnZ = 4 (nnew

Z = 3)
wherebesidesmatrix R also the vector tnew

Z
0 is shown at the top for clarity. The chosen

orderof the Givensplanerotationsimpliesthat the upper triangular form of matrix R is only
slightly destroyed: only one additional subdiagonalelementis introducedin eachcolumn
of Rint , which denotesthe resulting intermediateCholeskyfactor. In order to restore the
upper triangular form anothersequenceof Givensplanerotations is appliedto R int :
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Algebraically thesetransformationsof R can be expressedas

Rint
def= H

1
2 Z new

F (4.3.20a)

= H
1
2 ZF � O2;1(' 1) � : : : � OnZ ;nZ � 1(' nZ � 1) � P ;

Rnew
def= O1;2(' nZ ) � : : : � OnZ � 1;nZ (' 2(nZ � 1)) � Rint ; (4.3.20b)

whereP is a projection matrix which removesthe rightmost column. Furthermore, if we

de�ne O def= O1;2(' nZ ) � : : : � OnZ � 1;nZ (' 2(nZ � 1)), it is obviousthat the secondsequenceof
Givensplanerotations doesnot a�ect other matrices:

Z new
F

0H Z new
F = R0

int Rint = R0
new OO0

| {z}
= Id

Rnew = R0
newRnew : (4.3.21)

Adding a Bound to Working Set

When adding a bound to the working set we can assumethat the variable to be �xed
corresponds to the last column of the matrix C by applyingan appropriate permutation.
Thus, the column number of C and ZF as well as the dimensionof QF are decreasedby
one; the dimensionof T does not change. Addition of a bound on the last free variable

3This is actually only true under the asumptionthat Cnew
F hasfull row rank. Section4.5.1 describeshow

this can be maintained.
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appendsthe (transposed)nF-th coordinate vector
�
e0

nF

�

�
2 Rn , e0

nF
2 RnF, at the top of

the augmentedactive constraintsmatrix:
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Z
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0 �

� �

IdnX
�

T CX

1

A : (4.3.22)

The updated TQ factorisation is obtainedby reducingthe topmost row of the right hand
sidematrix of Eq. (4.3.22) to the nF-th coordinate vector via a sequenceof Givensplane
rotations:
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@
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F � �
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1
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� �

Idn X

1

A def=
�

QF �

�

Idn X

�
� O2;1(' 1) � : : : � On F ;n F� 1(' n F � 1) ; (4.3.23a)
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Tnew Cn F CX
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@
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Idn X
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T CX

1

A � O2;1(' 1) � : : : � On F;n F� 1(' n F � 1) ; (4.3.23b)

whereCnF denotesthe columnof C which correspondsto the newly �xed variable.

The �rst (nZ � 1) GivensplanerotationsO2;1(' 1) �: : : �OnZ ;nZ � 1(' nZ � 1), nZ � nF, alter the
columnsof QF (i.e. ZF) in the sameway asdescribedabovefor the casewherea constraint
is addedto the working set. Therefore, anothersequenceof Givensplanerotations hasto
be appliedin order to restore the upper triangular form of R int , too.
The last (nF � nZ) Givensplanerotations OnZ +1 ;nZ (' nZ ) � : : : � OnF;nF� 1(' nF� 1) havethe
e�ect of �lling in elementsabove the reversediagonalof matrix T, thereby shifting it one
position to the left and transforming it into Tnew. We picture this processfor nF = 4
(nnew

F = 3), nZ = 1 (nnew
Z = 0) andnA = 3; the topmost row of the right handsidematrix

of Eq. (4.3.22) is shown at the top:
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Removing a Constraint from Working Set

We considerthe situation wherethe i -th, 1 � i � nA , of the currently active constraints
shallbe removedfrom the working set. Then the row number of C and the dimensionof T
are decreasedby one; the columnnumber of ZF and the dimensionof R increaseby one.
First, the i -th row is removedfrom both CF and T leading to the matrices Cnew

F 2
R(nA � 1)� nF and Tint 2 R(nA � 1)� nA satisfying

Cnew
F QF =

�
�

Tint
�

: (4.3.24)
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Next, Tint is transformedto reverseupper triangular form whichis achievedvia Givensplane
rotations appliedto the columns1 through i :

�
�

Tnew
� def=

�
�

Tint
�

� OnZ + i;n Z + i � 1(' i � 1) � : : : � OnZ +2 ;nZ +1 (' 1) ;(4.3.25a)

Qnew
F

def= OnZ + i;n Z + i � 1(' i � 1) � : : : � OnZ +2 ;nZ +1 (' 1) : (4.3.25b)

We illustrate the transformation of T for the casenA = 4 (nnew
A = 3) and i = 3:
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Equation(4.3.25b) shows that ZF within QF is not alteredby the mentionedGivensplane
rotations. Thus, Z new

F is identical to ZF exceptfor the additionalrightmost columnznew
F 2

RnF which is a linear combinationof columns1 through i of YF. This fact providesan
e�cient possibility to calculatethe new Choleskyfactor Rnew from R (with r new 2 RnZ ,
%new 2 R> 0):

Z new
F

0H new
F Z new

F = R0
newRnew (4.3.26a)
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(4.3.26b)
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=
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(4.3.26c)

( ) rnew =
�
R0� � 1 Z 0

FHFznew
F ^ %new =

q
r 0

newrnew � znew
F

0HFznew
F :(4.3.26d)

Note that H new
F = HF and that the radicandwithin Eq. (4.3.26d) is positive as long as

Z new
F

0H new
F Z new

F 2 S� 0. This both necessary andsu�cient criterioncanactuallybe usedto
checkpositive de�nitenessof the projectedHessianmatrix during the runtime. Moreover,
it is worth mentioningthat calculationof the newCholeskyfactor Rnew via (4.3.26) is only
possibleif znew

F is appendedas the rightmost column of Z new
F . This fact motivates the

usageof a TQ decomposition becauseznew
F would be addedas the leftmost column if we

wereusingthe usualQR decomposition instead.

Removing a Bound from Working Set

Removinga boundfrom the working setmeansto freea previously�xed variable. Therefore,
the columnnumber of C andZF aswell asthe dimensionof QF andR are increasedby one;
the dimensionof T is unaltered. Applyinga suitablepermutation, we can assumewithout
lossof generality that the (nF + 1)-th variable, i.e. the �rst �xed one, is to be freedfrom
its bound. Then the leftmost columnof CX becomesthe rightmost columncnew

F 2 RnA of
Cnew

F :

�
� �

Idnnew
X

CF cnew
F Cnew

X

�
0

@
QF

� �

�

1
�

� �

Idnnew
X

1

A =
�

� � �

Idnnew
X

�

T cnew
F Cnew

X

�
; (4.3.27)
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whereCnew
X 2 RnA � (nX � 1) denotesmatrix CX without columncnew

F .
Thus, a sequenceof Givensplanerotations is usedin order to reduce(T cnew

F ) to reverse
lower triangular form (illustrated for nA = 3):

0

@
� �

� � �
� � � �

1

A  

0

@
� �

� � �
� � � �

1

A  

0

@
� �

� � �
� � � �

1

A  

0

@
� �

� � �
� � � �

1

A

Algebraically, the e�ects on T and QF can be expressedas
�

�

Tnew
� def= (

�

Tint cnew
F ) � OnF+1 ;nF(' 1) � : : : � OnZ +2 ;nZ +1 (' nF� nZ ) ; (4.3.28a)

Qnew
F

def=
�

QF
�

�

1

�
� OnF+1 ;nF(' 1) � : : : � OnZ +2 ;nZ +1 (' nF� nZ ) : (4.3.28b)

This sequenceof Givensplanerotations doesnot a�ect the old null spacebasismatrix Z F

but the new rightmost columnof Z new
F :

Z new
F

def=
�

ZF znew
F

�

� new
F

�
; � new

F 2 R n f 0g : (4.3.29)

This changeof ZF alsocausesH F to be modi�ed. Like in the casewherea constraint is
removedfrom the working set, no fresh Choleskydecomposition must be performed but
the following e�cient update schemecan be appliedinstead:

Z new
F

0H new
F Z new

F = R0
new Rnew (4.3.30a)

( )
�

Z 0
F �

znew
F

0 � new
F

� �
HF hnew

F
hnew

F
0 � new

� �
ZF znew

F

�

� new
F

�
=

�
R0

�

r 0
new %new

� �
R rnew

�

%new

�
(4.3.30b)

( ) rnew = (R0)� 1 Z 0
F (HFznew

F + � new
F hnew

F ) (4.3.30c)

^ %new =
q

znew
F

0(HFznew
F + 2� new

F hnew
F ) + � new

F (� new
F )2 � r 0

new rnew : (4.3.30d)

Again, the radicandwithin Eq. (4.3.30d) is positiveprovidedthat Z new
F

0H new
F Z new

F 2 S� 0.

4.4 Initialisation

In order to initialiseour onlineactiveset strategyan optimal solutionpair of the initial QP
and a corresponding working set A must be available. So the questionnaturally arisesof
how to obtain this information. One possibility would be to solvethe initial QP by means
of a standard activesetQP solver.But this would be rather inconvenientsinceall the e�ort
neededto implementand setup sucha solverwould be necessary just for the solution of
the very �rst QP. Instead,our onlineactiveset strategyallows for an easyworkaround: one
simply has to set up a QP whosesolution is known. A straightforward idea is to \solve"
the following QP:

min
x

1
2x0H x (4.4.1a)

s: t : � b � x � b; (4.4.1b)

� b � Gx � b; (4.4.1c)

wherethe gradient is set to zeroand b �
�

is arbitrary.
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Lemma 4.1 (initialisation): If b �
�

then (
�

;
�

) is a primal-dual solution pair of the
quadraticprogram (4.4.1) with correspondingworking set A = ; . �

Proof: If A is assumedto be empty the KKT conditionsof Theorem 2.5 havethe following
form:

H xopt =
�

;

yopt =
�

;

� b � Gxopt � b:

It is obviousthat they are satis�ed by the choice
�
xopt ; yopt

� def= (
�

;
�

). �

Therefore we can start from (
�

;
�

) and useour usualhomotopy to go towards the solution
of the initial QP.

This strategyalsoworks for equality constraints:Let usassumethat our initial QP comprises
the constraint

 � Gi x �  ;  2 R ; i 2 f 1; : : : ; mg : (4.4.2)

If this equality constraint is relaxedto the inequality constraint

� � � Gi x � � ; � 2 R� 0 (4.4.3)

� � will be both shifted towards  . As soon as one of the constraint's boundsbecomes
active,andthis musthappenby the time they coincide,the constraintwill not beconsidered
whendetermingthe maximumdual stepsize� dual

max anymore and thus will stay active for all
following iterations.
However, if there are nEC � min f n; mg equality constraintsthis procedureleadsto nEC

unnecessary working set changessinceall equality constraintswill �nally becomeactive. In
order to avoid this, it is possibleto start at (

�

;
�

) and include the indicesof all equality
constraintsinto the initial working set A(and the correspondingpart of b to zero). Similar
to Lemma4.1, it can be shown that (

�

;
�

) is still a primal-dualsolution. Of course,in this
casethe TQ factorisation CF = (

�

T) Q0
F aswell as the Choleskydecomposition hasto be

calculatedbefore starting the initial homotopy.

4.5 Degeneracy Handling

4.5.1 Linear Dependence of Constraints

Our algorithm requiresthat the KKT matrix in Eq. (4.3.7) is nonsingular. Becauseof the
assumedpositivede�nitenessof H this property holdsif and only if the augmentedactive
constraintsmatrix �

�

IdnX

CF CX

�

hasfull row rank (seeLemma2.2). Sincedeletionof a row cannot leadto rank de�ciency,
linear independenceonly needsto be ensuredif a row is addedto the augmentedactive
constraintsmatrix, i.e. if a bound or a constraint is addedto the working set.
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In order to clarify the idea, handling of linear dependenceis described for QPs where
boundsare treated as ordinary constraints,�rst. Re�nementsof this approach tailored to
our problemformulationandthe way we solvethe KKT systemwill be presentedafterwards.
In the casethat constraint j =2 A shall be added to the working set [11] proposed the
solution of the following auxiliary systemas a test if G0

j and the rows of GA (= C) are
linearly independent:

�
H G0

A
GA

�

� �
p
q

�
=

�
G0

j
�

�
; (4.5.1)

wherep 2 Rn and q 2 RnA .

Lemma 4.2 (linear independence check): Providedthat GA has full row rank, G0
j and

the rows of GA are linearly independent if and only if Eq. (4.5.1) has a solution with
p 6=

�

. �

Proof: SinceGA is assumedto havefull row rank, linear dependenceof G0
j andthe columns

of GA is equivalentto
9 q̂ 2 RnA : G0

j +
X

i 2 A

q̂i G0
i =

�

: (4.5.2)

Thus, if G0
j and the columnsof GA are linearly dependent (p; q) def= (

�

; � q̂) is obviously
a solution of (4.5.1). According to Lemma2.2 this solution is uniquewhich implies that
Eq. (4.5.1) hasno solutionwith p 6=

�

.
On the other hand,if G0

j andthe columnsof GA are linearly independent(and thus G0
j 6=

�

)
there existsno q̂ 2 RnA that satis�es Eq. (4.5.2). Therefore Eq. (4.5.1) has no solution
with p =

�

. But sinceLemma2.2 guaranteesthe existenceof a solution there must be a
solutionof Eq. (4.5.1) with p 6=

�

. �

So, if p 6=
�

we canconcludethat the activeconstraintmatrix keepsfull row rank after the
addition of constraint j to the working set. Otherwise,the componentsof vector q and the
current dual vector yopt

A canbe usedto determinea currentlyactiveconstraintwhich must
be removedbefore addingconstraint j to the working set: In this case

9! q 2 RnA : G0
j =

X

i 2 A

qi G0
i (4.5.3)

holds,wherethe uniquenessof q follows from the full row rank of GA , and it dependson
the componentsof q how we proceed. If q �

�

all following QPs on the current homotopy
path are infeasibleas the boundary of the set P of admissibleinitial valuesis reached(this
will be shown in Section4.5.2). Instead,we assumethat at least one component of q is
positive. Then the following result is valid (taken from [11]):

Theorem 4.1 (ensuring linear independence of the active constraints): Let GA bethe
current active constraintsmatrix with full row rank and G0

j , j =2 A, the constraint to be
addedto the working set A. Moreover, assumethat there exist a vector q 2 RnA as in
Eq. (4.5.3) with at least one positive component and let

�
~xopt (� 1); ~yopt (� 1)

�
denote the

optimal primal-dualsolution pair at the current point � 1 2 R� 0 on the homotopy path.
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Then the matrix
GAnew ; Anew

def= (A [ f j g) n f kg (4.5.4)

with

k def= argmin
i 2 A

(
~yopt

i (� 1)
qi

�
�
� qi > 0

)

(4.5.5)

alsohasfull row rank. �

Proof: Because
�
~xopt (� 1); ~yopt (� 1)

�
is a primal-dual optimal solution the KKT condi-

tion (4.1.5a) holds,i.e.

H ~xopt (� 1) + ~g(� 1) =
X

i 2 A

G0
i ~y

opt
i (� 1) : (4.5.6)

By multiplying Eq. (4.5.3) with an arbitrary � 2 R� 0 and subtracting the result from
Eq. (4.5.6) we yield

H ~xopt (� 1) + ~g(� 1) = �G 0
j +

X

i 2 A

G0
i

�
~yopt

i (� 1) � �q i

�
: (4.5.7)

Thus � and the coe�cients
�
~yopt

i (� 1) � �q i
�

are also a valid dual solution vector which
satis�es the KKT conditions(4.1.5) as long as all coe�cients remain nonnegative. The
largest valueof � for which this condition is satis�ed is givenby

� max
def= min

i 2 A

(
~yopt

i (� 1)
qi

�
�
� qi > 0

)

2 R� 0 : (4.5.8)

Note that this minimum is determinedovera nonempty set according to our assumptions.
Let k denote the constraint for which the minimum is attained, then ~yopt

k (� 1) is reduced
to zero and constraint k can thus be removedfrom the working set. Sinceqk > 0 the
constraintvector G0

j is linearly independentfrom the G0
i , i 2 A n f kg, and therefore matrix

GAnew , Anew
def= (A [ f j g) n f kg hasfull row rank. �

This result providesa computationallyconvenientway for choosinga linearly independent
subsetof activeconstraints,if necessary. But it doesnot guaranteethat this choiceallows
to make further progressalong the homotopy path becauseit might be that constraint k
immediatelybecomesactiveagain. In order to provethat this cannothappenundercertain
conditionswe needthe following de�nition from [83]:

De�nition 4.4 (ties): The quadraticprogram (4.1.3) has

� primal ties at � 0 2 [0; 1] if � prim
max < � dual

max and the minimum (4.1.10a) is obtainedfor
at least two distinct indices;

� dual ties at � 0 2 [0; 1] if � dual
max < � prim

max and the minimum (4.1.10b) is obtainedfor at
least two distinct indices;

� primal-dual ties at � 0 2 [0; 1] if � dual
max = � prim

max ;

� ties at � 0 2 [0; 1] if it hasprimal, dual or primal-dual ties. �

If ties occur thereare di�erent possibilitieshow to choosethe newworking set which poses
additional di�culties. Otherwisethe new working set is uniquelydeterminedand we can
prove the following theorem (taken from [11]):
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Theorem 4.2: If the assumptionsof Theorem 4.1 hold and if no ties occur at � 1, then
constraint k remainsinactivewithin an interval (� 1; � 2], � 2 > � 1, on the homotopy path. �

Proof: The current linear line segment~x(� 0) + � � x(� 0) of the primal optimal solution
homotopy, starting at some� 0 2 [0; � 1] and endingat � 1, was chosensuchthat

GA
�
~x(� 0) + � � x(� 0)

�
= ~bA(� ) 8 � 2 [0; 1] ; (4.5.9a)

G0
j

�
~x(� 0) + � � x(� 0)

�
< ~bj (� ) 8 � 2 (� 1; 1] (4.5.9b)

hold. Thus, by multiplying Eq. (4.5.3) with ~x(� 0) + � � x(� 0), one obtains the following
equation X

i 2 A

qi~bi (� ) < ~bj (� ) 8 � 2 (� 1; 1] : (4.5.10)

Within the next step of Algorithm 4.1, the new linear line segmentof ~x(� 1) + � � x(� 1),
starting at � 1 and endingat some� 2 2 [� 1; 1], is chosensuchthat

G0
i

�
~x(� 1) + � � x(� 1)

�
= ~bi (� ) 8 i 2 Anew

def= (A [ f j g) n f kg (4.5.11)

holdsin [0; 1]. By applyingEq. (4.5.3) again,we yield

~bj (� ) =
X

i 2 Anf kg

qi~bi (� ) + qkG0
k

�
~x(� 1) + � � x(� 1)

�
8 � 2 [0; 1] : (4.5.12)

Finally, by combiningEq. (4.5.10) and Eq. (4.5.12) we obtain

qk
~bk (� ) < qkG0

k

�
~x(� 1) + � � x(� 1)

�
8 � 2 (� 1; 1] (4.5.13)

and, sinceqk > 0, also

~bk (� ) < G0
k

�
~x(� 1) + � � x(� 1)

�
8 � 2 (� 1; 1] (4.5.14)

which proves that constraint k remains(strictly) inactive within the next step of Algo-
rithm 4.1 from � 1 to � 2. If no ties occur at � 1 only constraint j becomesactive at � 1 and
� 2 > � 1 is valid. �

An approachfor resolvingties is presentedin [83]. Thereinthe solutionof an auxiliary (non-
parametric) quadratic program is proposed,which seemsto be inadequatefor the online
context. Thus, our implementationdoesnot coverthe situationwhenties are present|and
no di�culties havebeenobservedso far.

Figure4.3 illustratesanexamplein whichlinear dependenceof the activeconstraintsoccurs:
the constraints are shifted while following the homotopy path (for simplicity, only one
constraint is thought to be parameterised)which causesdegeneracyat a certainhomotopy
parameter � 1. Then Theorem 4.1 can be utilised in order to resolvethis situation, i.e. to
�nd an active constraint which can be removedfrom the working set. Afterwards, further
progressalongthe homotopy path can be made.
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PSfragreplacements xopt

R2

(a) Two active constraints.

PSfragreplacements xopt

R2

(b) A third, parameterisedconstraint be-
comesactive which is linearly dependent
from the other ones.

PSfragreplacements xopt

R2

(c) A formerly active constraint is re-
moved from the working set (cf. Theo-
rem 4.1).

PSfragreplacements
xopt

R2

(d) The parameterised(and active) con-
straint is shifted further.

Figure 4.3: Exampleof linear dependenceof active constraints(bold) in parametric pro-
gramming(dark-grey: parameterisedconstraint,grey: feasibleset).

Implementation of Linear Dependence Handling

In order to ensurelinear independenceof the active constraints and to detect possible
infeasibility, the modi�ed KKT system(4.5.1) hasto be solved.According to Eq. (4.3.10)
the implementedvariant of this KKT systemreads

0

B
B
B
B
B
@

R0R Z 0
FHFYF Z 0

FHM
� �

Y 0
FHFZF Y 0

FHFYF Y 0
FHM

�
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H 0
M ZF H 0

M YF HX IdnX C0
X

� �

IdnX

� �

�

T CX
� �

1

C
C
C
C
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A
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B
B
B
B
B
@

Z 0
FpF

Y 0
FpF

pX
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1

C
C
C
C
C
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=

0

B
B
B
B
B
@

Z 0
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j )F

Y 0
F(G0

j )F

(G0
j )X

�

�

1

C
C
C
C
C
A

; (4.5.15)
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where p 2 Rn , q 2 RnA+ nX and G0
j 2 Rn were split into two parts corresponding to

the free and �xed variablesor the active constraints,respectively. Becauseof its special
structure the computationale�o rt for its solution is much lower than a normal primal-dual
step determination: �rst, we can exploit the equivalence

9! q 2 RnA : (G0
j )F =

X

i 2 A

qi (CF)0
i ( ) Z 0

F(G0
j )F =

�

(4.5.16)

which holdssincethe constraint to be addedto the working set is linearly dependentwith
the active constraintsif and only if it lies completelyin the rangespaceof CF and is thus
orthogonalto all basisvectors of the null spaceof CF. So, if Z 0

F(G0
j )F 6=

�

we canstop the
calculationas no linear dependenceoccurs. Otherwise,we proceedwherethe information
Z 0

F(G0
j )F =

�

further simpli�es the solution. SinceZ 0
FpF, Y 0

FpF andpX becomezeroin this
case,we �nally end up with the following formulaefor q:

qA = (T0)� 1Y 0
F(G0

j )F ; (4.5.17a)

qX = (G0
j )X � C0

XqA : (4.5.17b)

Compared to the calculationof the primal-dual step direction via Eqs. (4.3.11), the cost
for a linear dependencecheck is almost negligible. Especially if a bound is addedto the
working set becausethen (G0

j )F equalsa unity vector and (G0
j )X is zero. However, note

that in the caseof degeneracyfurther computationsare necessary in order to perform the
additional changeof the working set.

4.5.2 Infeasibilit y

The proposedonline active set strategy producesa sequenceof iterates which are primal
and dual feasiblefor consecutive(intermediate) quadratic programs. Thus, infeasibility
can only occur if a bound or constraint is addedwhile following the homotopy path. In
this casethe augmentedactive constraints matrix has to be preventedfrom becoming
rank de�cient anyway and we mentionedin Section4.5.1 that possibleinfeasibility can be
detectedsimultaneously, as follows.
Recallthe situation4 whena constraint j =2 A shall be addedto the working set A. If GA

hasfull row rank, linear dependenceof G0
j and the columnsof GA is equivalentto

9! q 2 RnA : G0
j =

X

i 2 A

qi G0
i : (4.5.18)

Theorem 4.1 shows that we can resolvelinear dependenceif the vector q in Eq. (4.5.18)
has at least one positive component. If this in not the caseinfeasibility is encountered
(cf. [11]):

Theorem 4.3 (infeasibilit y detection): Let GA be the current active constraintsmatrix
with full row rank andG0

j , j =2 A, the constraintto be addedto the working setA. Assume
that there existsa vector q 2 RnA as in Eq. (4.5.18) which has no positive component.
Moreover,let

�
~xopt (� 1); ~yopt (� 1)

�
denotethe optimal primal-dual solution pair at the cur-

rent point � 1 2 R� 0 on the homotopy path and assumethat no ties occur at � 1.
Thenall parametricquadraticprogramson the homotopy path with � > � 1 are infeasible. �

4Again, for clarity, we restrict the presentationto the casewhereboundsand constraints are not distin-
guished.
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Proof: Supposethat for some� > � 1 an arbitrary vector x 2 Rn satis�es the constraints

G0
i x � ~bi (� ) 8 i 2 A : (4.5.19)

Multiplying eachsuch inequality by qi � 0, adding them together and usingEq. (4.5.18)
leadsto

G0
j x �

X

i 2 A

qi~bi (� ) : (4.5.20)

But on the other hand,as in the proof of Theorem 4.2 (cp. Eq. (4.5.10)), we can derive
X

i 2 A

qi~bi (� ) < ~bj (� ) 8 � 2 (� 1; 1] (4.5.21)

which implies
G0

j x < ~bj (� ) 8 � 2 (� 1; 1] : (4.5.22)

Sincex was arbitrary, constraint j will be violated for all � > � 1 as long as all constraints
indexedby A remain ful�lled. Therefore, there exists no point satisfyingall constraints
indexedby A [ f j g no matter how the primal step direction is chosen.SinceTheorem 2.8
guaranteesthe existenceof a continuouscontinuationof x opt (� ) all QPson the homotopy
path are infeasiblefor (� 1; � 1 + ") and some" > 0. Finally, the convexity of P (cp. Theo-
rem 2.6) provesthat all QPs on the homotopy path are infeasiblefor all � > � 1. �

If the situation of Theorem 4.3 occurs,the boundary of the set of feasibleparametersP is
reachedand we know that the current QP is infeasible:

Theorem 4.4 (infeasibilit y of the current QP): Let QP(w0) be the feasible, recently
solvedquadratic program and QP(wnew

0 ) the one to be solvednext (both strictly convex
andno ties occur alongthe homotopy path betweenthem). Then QP(wnew

0 ) is infeasibleif
and only if thereexistsa � 1 2 [0; 1)|along the homotopy from QP(w0) to QP(wnew

0 )|to
which Theorem 4.3 applies. �

Proof: All primal-dual pairs
�
xopt (� ); yopt (� )

�
, � 2 [0; 1], along the homotopy path are

optimal and xopt (� ) primal feasible,hence.If there is no � 1 < 1 to which Theorem 4.3 ap-
pliesit is possibleto follow the homotopy until the optimal solutionof QP(wnew

0 ), implying
its feasibility.

The conversedirection follows directly from Theorem 4.3 asQP(wnew
0 ) denotesthe QP on

the homotopy path at � = 1. �

If infeasibility of the currentquadraticprogramto be solvedis detectedvia Theorem 4.4 our
implementationof the onlineactive set strategyjust stopsthe homotopy and waits for the
next QP whichmay be feasibleagain. In doingso,convexity of P ensuresthat a homotopy
from the currently solvedintermediateQP to the new oneexists(seeFigure 4.4).

Providedthat the MPC problemis well-posed,infeasibility shouldbe a rare exceptionand
mainlydueto measurementerrors of the currentprocessstatewnew

0 . Oneinterpretation of
our infeasibility strategyis that it \trusts" the currentprocessstate aslong asthe resulting
QP remainsfeasibleand usesa linear interpolation betweenwnew

0 and the old processstate
w0 otherwise. This strategy seemsadequatefor practical setups,whereuncertaintiesare
inherentlypresent,evenif more elaborated schemesmay be conceivable.
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PSfragreplacements

w0

wnew
0

Figure4.4: Infeasibility handlingof the proposedonlineactive set strategy.

4.6 Computational Complexit y

4.6.1 Runtime Complexity

We already know from Section 3.1 that the e�ort for one iteration of a primal active
set method is O(n2) if matrix updates are used. In this sectionwe want to investigate
the runtime complexity of the proposedonline active set strategy in more detail. Since
theoretical valuesfor the number of required iterations for �nding the solution are not
available|only an (almost trivial) exponentialworst-casebound is known|w e restrict the
presentationto the complexity of onesingleiteration.

Algorithm 4.1 starts with calculatingthe vectors � w0, � g and � b via Eqs. (4.1.1) which
obviouslyrequiresO(n) oating-p oint operations5.
Afterwards, the primal-dualstep directions� xopt and � yopt haveto be determined.This
is doneby usingEqs.(4.3.11) while exploitingcommonsubexpressionstherein. Clearly, as
nF; nX � n and nA ; nI � n, this calculationrequiresO(n2) oating-p oints operations;the
exactvalueis givenin Table 4.1.
Third, the maximum homotopy step length � max has to be obtained from Eqs. (4.1.10).
This makesthe calculationof the matrix-vector product G0

I � xopt andtherefore nn I oating
point operationsnecessary6; besidessomenegligibleO(n) operations.

5Within this sectiona oating-p oint operation is de�ned as onemultiplication/division together with an
addition. Thus, calculatingthe dot product a0b of two vectors a; b 2 Rn requiresn oating-p oint operations,
for example.

6In the very �rst iteration also G0
I x

opt has to be calculated, which is zero if the initialisation homotopy
is used.
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Steps(4), (5) and (7) only involvea �xed number of somevector operationsand thus have
O(n) complexity.
Finally, step(6) involvesoneof the four possiblematrix updates(i.e. adding/removingof a
bound/constraintto/from the working set). Their computationale�o rt caneasilybederived
from their detaileddescriptionin Section4.3.3(seealso[39]) andissummarisedin Table4.1,
assumingthat a Givensplanerotation can be performed by meansof three oating-p oint
operations(cf. page49). Note that alsothe e�ort for calculatingthe product Z 0

F(G0
j )F, as

decribed in Section4.5.1, is includedinto the complexity of addinga bound/constraint. If
this product equalszero linear independencemust be ensured:via Eqs.(4.5.17) and some
O(n) operationsa bound or a constraint is determinedwhich hasto be removedfrom the
working set.

Table4.1: Runtimecomplexity of the onlineactive set strategy(generalcase).

Task: Complexity:

Determinationof step direction 5n2 � 2nnA � 8nnX + 2n2
A + 4nAnX + 4n2

X + O(n)
Determinationof step length nn I + O(n)

Removinga bound from working set 5
2 n2 + nnA � 5nnX + 2n2

A � nAnX + 5
2 n2

X + O(n)
Removinga constraint from working set7 5

2 n2 � 1
2 nnA � 5nnX + 7

8 n2
A + 1

2 nAnX + 5
2 n2

X + O(n)
Adding a bound to working set 5n2 � 4nnA � 10nnX + 3

2 n2
A + 4nAnX + 5n2

X + O(n)
Adding a constraint to working set 5n2 � 4nnA � 10nnX + 4nAnX + 5n2

X + O(n)
Ensuringlinear independence nnA + 1

2 n2
A + O(n)

Remainingcalculations O(n)

As summarised in Table 4.1, the computationale�o rt of all stepsof the online active set
strategydependsnot only on the number of variablesbut alsoon how many variablesare
�xed (nF) and how many constraintsare active (nA). One completeiteration consistsof
determinationof the step direction, determinationof the step length, one changeof the
working set and the remainingcalculations.In order to simplify the analysis,we de�ne the
averagee�ort for oneworking set changeas

nX

2n
� \removing a bound" +

nA

2n
� \removing a constraint"

n � nX

2n
� \adding a bound" +

n � nA

2n
� \adding a constraint" ;

(4.6.1)

sinceit seemsreasonableto assumethat it is more likely that a bound is to be removed
from the working set if more variablesare �xed and so on.
Furthermore, we can considerthe casewhenlinear independenceoccurs. Then also linear
independencehasto be ensuredby removinga boundor a constraint from the working set.
The averagee�ort for performing this additionalworking set changeis chosenas

nX

nX + nA
� \removing a bound" +

nA

nX + nA
� \removing a constraint" ; (4.6.2)

providedthat nX + nA > 0.
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Chapter 4. An Online Active Set Strategy for Mo del Predictive Control

As a last simpli�cation, we assumethat the number of constraintsequalsthe number of
variables,i.e. m = n, and expressboth the number of �xed variablesand the number of
active constraintsas a fraction of somearbitrary but �xed n 2 N:

nX
def= n� X ; � X 2 [0; 1] ; (4.6.3a)

nA
def= n� A ; � A 2 [0; 1 � � X ] : (4.6.3b)

Table4.2 shows the runtime complexity of the onlineactiveset strategyfor di�erent values
of � X and � A . Figure 4.6.1 illustrates the runtime complexity of one completeiteration
(no linear dependenceoccurs)of the onlineactiveset strategywith respect to the number
of �xed variablesand active constraintsas de�ned in Eqs.(4.6.3).
We can seethat the most computationale�o rt per iteration is neededif no variablesare
�xed andno constraintsare active,whichnormally is the caseif the systemto be controlled
is near a steady-state. If the number of �xed variablesor active constraintsincreasesthe
runtime complexity decreasessigni�cantly. This e�ect is particularly striking if the number
of free variables becomessmall which also justi�es the distinction between bounds and
constraints.
Another expected observationis that computationale�o rt increasesif linear dependence
occurs. Therefore, it is reasonableto take the e�ort of onecompleteiteration in whichlinear
dependeceoccursandno variablesare �xed andno constraintsare active,i.e. 13:5n2+ O(n)
oating-p oint operations,asan uppperbound for the computationalburdenof oneiteration
(evenif linear dependencecannotoccur in this situation). Although this boundneednot to
be strict becauseof the averagingprocessof Eqs. (4.6.1) and (4.6.2) and the assumption
m = n, it should be a su�ciently accurateguessfor practical purposesif n is \la rge".
Especiallyif m � n onecan construct situationswherethe computationale�o rt might be
higher, but it is important to note that the e�ort per iteration grows quadratically in the
number of variablesas long as m 2 O(n).

Table 4.2: Runtime complexity of the online active set strategy modulo O(n) for several
specialcases.

Task:
Complexity:

nX = 0, nX = n
3 , nX = 0, nX = n

3 , nX = n, nX = 0
nA = 0 nA = 0 nA = n

3 nA = n
3 nA = 0 nA = n

Determinationof step direction 5:0n2 2:8n2 4:6n2 2:8n2 1:0n2 5:0n2

Determinationof step length 1:0n2 1:0n2 0:7n2 0:7n2 1:0n2 0:0n2

Removinga bound 2:5n2 1:1n2 3:1n2 1:6n2 0:0n2 5:5n2

Removinga constraint7 2:5n2 1:1n2 2:4n2 1:1n2 0:0n2 2:9n2

Adding a bound 5:0n2 2:2n2 3:8n2 1:5n2 0:0n2 2:5n2

Adding a constraint 5:0n2 2:2n2 3:7n2 1:3n2 0:0n2 1:0n2

Ensuringlinear independence 0:0n2 0:0n2 0:4n2 0:4n2 0:0n2 1:5n2

One completeiteration
11:0n2 5:8n2 8:8n2 4:8n2 2:0n2 7:7n2

(no linear dependenceoccurs)

One completeiteration
[13:5n2] 7:1n2 11:8n2 6:6n2 2:0n2 11:9n2

(linear dependenceoccurs)
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Figure 4.5: Runtime complexity of one completeiteration (no linear dependenceoccurs)
of the online active set strategy with respect to the number of �xed variablesand active
constraints.

Re�nements for Determing the Step Direction

As mentionedin Section4.3.2, the computationale�o rt for calculatingthe primal-dualstep
direction can be reducedif the currently active boundsbX or constraints' boundsbA (see
Eq. (4.3.2)) are independent from w0. We omit the resulting equivalentsto Eqs. 4.3.11
and just summarise their runtime complexitiesin Table 4.3. If both active bounds and
constraintsdo not dependon w0 savingsbetween20% and100% are theoretically possible
(compared with the standard approachfor determingthe step direction).

Table 4.3: Runtime complexity for calculatingthe primal-dual step direction of the online
active set strategy.

Task: Complexity:

Determinationof step direction 5n2 � 2nnA � 8nnX + 2n2
A + 4nAnX + 4n2

X + O(n)

Determinationof step direction
5n2 � 2nnA � 9nnX + 2n2

A + 3nAnX + 4n2
X + O(n)

(boundsindependent)
Determinationof step direction

4n2 � 3nnA � 7nnX + 3
2 n2

A + 4nAnX + 3n2
X + O(n)

(boundsand constraintsindependent)

7The computational e�o rt depends on which constraint is removed. For simplicity, it is assumedthat
the n A

2 th row is removedfrom GA .
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4.6.2 Memory Requirements

The proposedonline active set strategy was implementedunder the assumptionthat all
matricesare dense, i.e. that most entriesare non-zero. This is justi�ed if the matricesof
the open-loop optimal control problem are denseor a long prediction horizon np � 1 is
used(leadingto denseentriesA j B , 0 � j � np � 1, in Eq. (2.2.20c)). Thus, all matrices
H , A, T, Q and R are stored completelyin two-dimensionalarrays. For eachmatrix the
maximal possiblyrequired memory is allocated and, for simplicity, no advantageof the
symmetryof H and the triangular shape of T and R is taken. Table 4.4 lists all memory
requirementsof our implementationof the online active set strategy and shows that the
storagecomplexity is O(n2), providedthat the number of constraintsgrows linearly in the
number of variables.

Table4.4: Memory requirementsof our implementationof the onlineactive set strategy.

Data: H A T Q R others total

Memory: n2 nm n2 n2 n2 O(n) 4n2 + nm + O(n)

4.7 Further Re�nements and Extensions

In this sectionwe useformulation (2.3.15) insteadof (4.3.1) for notational convenience.

4.7.1 Step Length Determination

Most of the runtime for determingthe primal-dual step length is spent for calculatingthe
maximalprimal steplength via Eq. (4.1.10a). This calculationeventakesa signi�cant part
of the whole computationale�o rt for one iteration if the number of constraintsbecomes
large (compared with the number of optimisationvariables). Therefore, we presentan idea
of how the determinationof the maximalprimal step length can be simpli�ed.

We assumewithout lossof generality that every(nontrivial) constrainthasEuclideanlength
one,which can easilybe achievedby normalisingeveryconstraint, i.e.

G0
i x � ~bi (� ) ( )

G0
i

kG0
i k2

x �
~bi (� )
kG0

i k2
8 i 2 f 1; : : : ; mg: (4.7.1)

At everyprimal solution along the homotopy path, � 2 [0; 1], and for everyconstraint we
de�ne a feasibility measure:

" i (� ) def= G0
i x

opt (� ) � ~bi (� ) � 0 8 i 2 f 1; : : : ; mg: (4.7.2)

Then the following holds:

Lemma 4.3 (feasibilit y measure): Let a normalisedconstraint G0
i x � ~bi (� ), 1 � i �

m, with corresponding feasibility measureas de�ned in Eq. (4.7.2) be given. Let this
constraint be inactive at some�xed � 1 2 [0; 1] along the homotopy path, i.e. " i (� 1) > 0,
and k� x(� 1)k2 + j� bj < " i (� 1). Then the constraint remainsinactive for all � 2 [� 1; 1]. �
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Proof: The triangle and Cauchy-Schwarz's inequality imply:

G0
i

�
xopt (� 1) + � � x(� 1)

�
�

�
bi (0) + � � bi

�

= " i (� 1) + �
�
G0

i � x(� 1) � � bi
�

� " i (� 1) � �
�
�G0

i � x(� 1) � � bi
�
�

� " i (� 1) � �
� �
�G0

i � x(� 1)
�
� + j� bi j

�

� " i (� 1) � �
� 
 G0

i




2


 � x(� 1)




2 + j� bi j
�

= " i (� 1) � �
� 
 � x(� 1)




2 + j� bi j
�

� " i (� 1) �
� 
 � x(� 1)




2 + j� bi j
�

> " i (� 1) � " i (� 1) = 0;

which shows that the constraint remainsinactive for all � 2 [� 1; 1]. �

This lemma shows that an inactive constraint whosefeasibility measureis greater than
the Euclideannorm of the current primal step direction plus the absolutevalue of the
constraint vector step direction cannot becomea blocking constraint. Hence,storing the
feasibility measureof the inactiveconstraintsmay partly avoidthe calculationof the product
G0

I � x(� 1) in Algorithm 4.1. Sincecalculating the feasibility measures" i (� 1), i 2 I (� 1),
exactlyafter eachhomotopy stepwouldoutweighthe possiblebene�t, onlycheaplyavailable
lower bounds" i � " i (� ) 8 � 2 [0; 1] are held:

(1) for � 1 = 0 de�ne

" i
def= " i (0) 8 i 2 I (0) ; (4.7.3)

(2) whendetermingthe maximumprimal homotopy step length � max consideronly inac-
tive constraints1 � i � m with

k� x(� 1)k2 + j� bi j � " i ; (4.7.4)

(3) afterwards update " i as follows:

" i
def=

(
" i (� 1 + � max ) k� x(� 1)k2 + j� bi j � " i ;

" i � (� 1 + � max )
� 
 � x(� 1)




2 + j� bi j
�

else:
(4.7.5a)

Steps(2) and (3) are repeated until the solution of current QP (� 1 = 1) is found, and
also afterwards for solving the following QPs. Note that step (3) requiresonly O(m)
additional oating-p oint operationsasall necessary quantitiesare alreadycalculatedin the
secondstep. Therefore considerablecomputationalsavingscanbe expectedif the quadratic
programcomprisesmanyconstraintsthat are \fa r" from becomingactive. In our �rst test
example(seeChapter5) we observedcomputationalsavingsup to 10%.

4.7.2 Extension to Sequential Quadratic Programming

Now we briey presenta possibility to extend the proposedonline active set strategy to
nonlinear MPC. Asmentionedin Section2.1, in this casea nonlinear program(NLP) instead
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Chapter 4. An Online Active Set Strategy for Mo del Predictive Control

of a QP hasto besolved.This canbedonee�ciently via sequentialquadraticprogramming
(SQP) methods (see,e.g., [65] for a detaileddescription). Therein a sequenceof QPs is
solvedat eachsamplinginstant which di�er not only in the gradient and the constraint
vector, but alsoin the (positivede�nite) Hessianmatrix (approximation) andthe constraint
matrix.

Let us assumethat we havesolvedoneof theseQPs:

QP : min
x2 Rn

1
2x0H x + x0g (4.7.6a)

s: t : Gx � b; (4.7.6b)

with optimal primal-dualsolutionpair
�
xopt ; yopt

�
and correpondingoptimal working set A

and now want to solvethe next one:

QPnew : min
x2 Rn

1
2x0H newx + x0gnew (4.7.7a)

s: t : Gnewx � bnew : (4.7.7b)

By subtracting the KKT optimality conditions(2.3.13) of both QPs it is easyto seethat�
xopt ; yopt

�
, together with the sameoptimal working set A8, is also the optimal solution

of the transformed QP:

� !
QP : min

x2 Rn

1
2x0H newx + x0~g (4.7.8a)

s: t : Gnewx � ~b; (4.7.8b)

with

~g def= g � (H new � H ) xopt + (Gnew � G) yopt ; (4.7.9a)

~b def= b+ (Gnew � G) xopt : (4.7.9b)

Thus, it is possibleto start from the optimal solution
�
xopt ; yopt

�
of

� !
QP and start a

homotopy towards the solution of QPnew. In doing so the following steps have to be
performed:

1. Calculatematrix factorisationsof newHessianmatrix H new andnewconstraintmatrix
Gnew for optimal working set A;

2. Calculate transformed gradient vector ~g and transformed constraint vector ~b via
Eqs.(4.7.9);

3. Peform a homotopy from
� !
QP to QPnew (i.e. from ~g to gnew and from ~b to bnew,

respectively) starting from the last optimal solution
�
xopt ; yopt

�
.

This approach makes it possibleto warm start also the QPs within a SQP algorithm and
evenallows to interrupt solving the optimal control problem during one SQP iteration.
Implementingthis extensionof our online active set strategy will be an issuefor future
work.

8Provided that Gnew
A has full row rank.
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Chapter 5

Numerical Tests:
Chain of Spring Connected Masses

Now we want to analysethe performanceof the proposedonlineactiveset strategyby solv-
ing two di�erent problems: the �rst one is a challengingbenchmark problem|comp rising
240 variablesand 1191bounds/constraints|where a chain of spring connectedmassesis
regulatedbackinto its steady-stateafter a strongexcitation. Second,seeChapter6, we aim
at controllinga real-world Dieselengineavailablefor experimentsat the Institute for Design
andControl of MechatronicalSystemsin Linz, Austria. The resultsare alsocompared with
thoseof a standard active set QP solverand the explicit (o�ine) approach.

5.1 Mo del Description and Problem Formulation

Our �rst test exampleis a variant of a recently publishedbenchmark problem [86], [87].
Sinceit was deeplyanalysedin [86] we outline only its main characteristics.
We considera chainconsistingof nine ballswhich are connectedby eight Hookian springs
in betweenand two further Hookianspringsat eachend. Eachball i , 1 � i � 9, is thought
to be concentratedin a singlepoint x i 2 R3 with massm 2 R> 0 (in kg). All springs are
identical havingspring constantd 2 R> 0 (in N/m ) and rest length L 2 R> 0 (in m). One
end of the chain is �xed at a certain point x0 2 R3, whereasthe free end of the spring at
the other end of the chain is freely movable(its position is denotedby x 10 2 R3). The
whole chain of spring connectedmassesis situated in a homogeneousgravitational �eld
decribed by its accelerationvector g 2 R3 (in m/s2).

Without loss of generality, we let x0 def=
�

and obtain for all times t 2 T def= [0; 1 ) the
following (second-order) ODE systemfrom Newton's laws of motion:

•x i (t) =
F i;i +1 (t) � F i � 1;i (t)

m
+ g 8 i 2 f 1; : : : ; 9g ; (5.1.1a)

where F i;i +1 (t) def= d
�

1 �
L

kx i +1 (t) � x i (t)k2

�
�
x i +1 (t) � x i (t)

�
(5.1.1b)

denotesthe forceacting on the i th massdueto the spring betweenthe i th andthe (i + 1)th
mass(pointing from x i to x i +1 ). Via standard techniques,this systemcanbe reformulated
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Chapter 5. Numerical Tests: Chain of Spring Connected Masses

as a �rst-o rder, i.e. involving only �rst time derivatives,ODE systemby introducing the
velocity vectors _x i (t) 2 R3, 1 � i � 9, of the massesas additionaldi�erential variables.
The chain is controlledby manipulatingthe three velocity componentsof the free end at
point x10, leadingto three additionaldi�erential equations

_x10(t) = u(t) ; (5.1.1c)

whereu : T ! R3 denotesthe processinputs asdescribed in Section2.1. By de�ning

x(t) def=
�
x1(t)0; _x1(t)0; : : : ; x9(t)0; _x9(t)0; x10(t)0� 0 2 R57 (5.1.2)

system(5.1.1) becomesa nonlinear model of the form:

_x(t) = f
�
x(t); u(t)

�
8 t 2 T : (5.1.3)

In order to obtain a linear processmodel we linearise system(5.1.1) at a steady-state.It
can be shown that all velocities of the massesand the controllableend of the chain _x i (t),
1 � i � 10, must be zeroat a steady-state.Thus, if we �x the position of the free end of

the chain,i.e. x10(t) def= xend 2 R3 for all t 2 T, the uniquestablesteady-state(x̂;
�

) 2 R60

satisfying
�

= f
�
x̂;

�

�
(5.1.4)

iseasilyobtained. Afterwards,the systemmatricesof the linear processmodel(Eqs.(2.2.1))
are de�nied as

A def=
@f

�
x̂;

�

�

@x(t)
and B def=

@f
�
x̂;

�

�

@u(t)
(5.1.5)

aswell as
C def= Id57 : (5.1.6)
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Figure5.1: Chainof spring connectedmassesat its steady-statefor xend = (5; 0; 0). (The
controllablefree end of the chain is symbolisedby a black ball.)
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The (quadratic) objective function is chosensuch that deviationsfrom the steady-state
(x̂;

�

) are penalised:

min
x ( t ) ; u ( t )

1
2

t 0 + t pZ

t 0

�
x(t) � x̂

� 0

0

B
B
B
B
B
B
B
@

�

� � Id3

: : :

�

� � Id3

� � Id3

1

C
C
C
C
C
C
C
A

| {z }
=

def
Q

�
x(t) � x̂

�
+ u(t)0

0

@





1

A

| {z }
=

def
R

u(t) dt ;

(5.1.7)
with �; � ;  2 R> 0. This choiceimpliesQ 2 S57

� 0 andR 2 S3
� 0, a terminal penalty weight

matrix is not used(i.e. P def=
�

2 S57
� 0).

Finally, we imposeboundson the processinputs

� 1 � ui (t) � 1 8 i 2 f 1; 2; 3g (5.1.8)

and thus yieldingthe benchmark examplefrom [86]. Additionally, we placea vertical wall
(parallel to the secondcoordinate axis) near to the chain at steady-state(x̂;

�

); and we
choosexend such that the chain at this steady-stateis hangingparallel to this wall (see
Figure5.1). Then we introducelower boundson the secondcomponent of the position of
all balls, i.e. � wall � x i

2 for all 1 � i � 9, in order to preventthe chainfrom hitting the wall
while it is controlled. In the notation of De�nition 2.3, theseconstraintstogetherwith the
bounds(5.1.8) read

0

B
B
B
B
B
B
@

� wall
:::

� wall

�
�

�
�

1

C
C
C
C
C
C
A

| {z }
=

def
l

�

0

B
B
B
B
B
B
@

e0
2

�

: : :
:::

e0
2

�

� �

� �

1

C
C
C
C
C
C
A

| {z }
=

def
M

x(t) +

0

B
B
B
B
B
@

�

�

�

Id3

� Id3

1

C
C
C
C
C
A

| {z }
=

def
N

u(t) ; (5.1.9)

with the secondcoordinate vector e2 2 R3.

The continuous-timeopen-loop optimal control problem(5.1.1), (5.1.7), (5.1.9) is discre-
tised into a �nite optimisationproblem,seeSection2.2, by dividing the prediction horizon

of length tp
def= 16s into np

def= 80 equidistant control intervals. The dimensionsof the
resultingparametric quadratic program (after the condensingproceduredescribed in Sec-
tion 2.2.3) are given in Table 5.2. Somenumericalpropertiesof this parametric quadratic
programare summarisedin Table5.3; the usednumericalvaluesof all the abovementioned
model constantsare listed in Table 5.1.

Table5.1: Numericalconstantsfor the chainexample.

Constant: m d L g xend � �  � wall

Value: 0:03 1 0:0333 (0; 0; � 9:81) (5; 0; 0) 50 2 0:02 � 0:2

71



Chapter 5. Numerical Tests: Chain of Spring Connected Masses

Table5.2: Problemdimensions(after condensing)of the chain example.

Quantity: Dimension:

Dimensionof initial valuevector 57
Number of variables 240
Number of bounds 480
Number of constraints 711

Table5.3: Matrix propertiesof the chainexample.

Property: Value:

Conditionnumber of Hessianmatrix H 1:01 � 104

Maximum eigenvalueof Hessianmatrix H 5:26 � 100

Minimum eigenvalueof Hessianmatrix H 5:20 � 10� 4

Number of nonzeroelementsof Hessianmatrix H 57600(100:0%)

Conditionnumber of constraintmatrix G 9:57 � 103

Numericalrank1 of constraintmatrix G 79
Number of nonzeroelementsof constraintmatrix G 84368(49:6%)

5.2 Numerical Results

We simulate in a closed-loop manner integrating the nonlinear ODE systemwith high
accuracyin order to obtain the movementsof the chain. Sincewe control the chain using
a linear model, feedbackcontrol is mandatory evenin this nominalsetup(i.e. without any
noiseor measurementerrors). Starting at the steady-statecorrespondingto x end = (5; 0; 0),
a strongperturbationis exertedto the chainby movingthe freeendwith a constantvelocity
(� 1:5; 1:0; 1:0) m=s for 3 seconds.Then the MPC controller takesoverand tries to return
the chaininto its original steady-statewhile not hitting againstthe wall. (Note that during
the initial pertubation phasethe optimiser is alreadyrunning but the calculatedoptimal
control action is not given back to the chain.) This scenario is simulatedon the time

horizon [0; 20]s using a constant samplingtime of � def= 0:2s, i.e. � def= 1 in Eq. (2.2.9).
It was tested with four di�erent methods: �rst, we solveevery QP exactly using three
alternativemethods:

� qpsol with cold start, i.e. initialisation with an empty working set and the origin as
an intial guessfor the solution,

� qpsol with warm start, i.e. the solveris initialisedwith the solutionandcorresponding
working set of the previousQP (but without providing any matrix factorisations),

� onlineactiveset strategyaspresentedin Chapter4 wherewe follow everyhomotopy
path until the exactsolution is reached.

1Number of (normalised) singular valuesgreater than 10� 15 ; see[46] for a discussionon determing the
rank of a matrix numerically.
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Second,we allow for an inexactQP solution by usingthe

� onlineactive set strategyand limiting the maximumnumber of working set changes
(as described in Section4.2) to 10.

qpsol is a very common primal active set QP solver basedon the null spacemethod
(see Section 3.1.1). It is written for QPs with densematrices and solvesan auxiliary
LP for �nding an initial feasiblepoint during phaseI. A descriptionof the FORTRAN
implementationis givenin [62].

Figure 5.2 illustrates the optimally controlled chain at four particular time instants. The
number of boundsand constraints'boundsactiveat the solutionof eachQP aswell as the
Euclideannorm of the QP solution vector are depictedin Figure 5.3 for the caseof exact
QP solution.
The number of QP iterations, i.e. the number of working set recalculationsin the caseof
the onlineactiveset strategy, and runtimes2 per samplinginstant are reported in Table5.4
and illustrated in Figures5.4 and 5.5, respectively.
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(b) Early moment in control phase(t = 4s)
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(d) Almost at steady-state(t = 20s)

Figure5.2: Optimally controlledclosed-loop trajectory of the chainwith exactQP solution.
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Chapter 5. Numerical Tests: Chain of Spring Connected Masses
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(b) Euclideannorm of the QP solution vector.

Figure 5.3: Properties of the exact QP solution for the optimally closed-loop controlled
chain.

Table5.4: Comparison of standard QP solverand onlineactive set strategieswith respect
to runtimesand number of iterations.

Method:
Maximum Average Maximum no. Averageno.

runtime [ms] runtime [ms] of iterations of iterations

qpsol (cold start) 1006.8 223.5 60 10.4
qpsol (warm start) 969.6 140.9 71 7.1
onlineactive set strategy

74.8 18.5 14 3.3
(fully converged)
onlineactive set strategy

51.6 16.8 10 3.1
(at most 10 iterations)

The solution, and thus also the optimal objectivefunction value,are identical whenusing
qpsol or the fully convergedonlineactiveset strategy. Moreover,all QPs are feasibleand
sothe optimal solutionis feasiblein thesecases,too. However,note that tiny infeasibilities
of the \real" chain with respect to constraint violationsmay occur betweentwo sampling
instancesbecausethe model is not exact. A qualitatively di�erent form of infeasibilities
can occur if the real-timevariant of the onlineactive set strategyis used: if the homotopy
towards the new QP solution is stopped prematurelythe solution of the intermediateQP
might be suboptimal and infeasiblewith respect to the currentQP that onewants to solve.

2All simulations were performed on an Intel Pentium 4 processor with 2.53GHz (single core), 512kB
L2 cacheand 1GB main memory using gcc 3.3.4 with compiler ag -O3. The runtimes are obtained from
multiple measurementswith the linux-speci�c function gettimeofday() and shouldbe accuratewithin some
hundredmicroseconds.
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5.2. Numerical Results

In the chain test scenario thesepossibleinfeasibilitiesare restrictedto constraintviolations
becauseall boundsare equally�xed for all samplingtimes and their ful�lment is thus not
a�ected by the current position along the homotopy path. Table 5.5 compares the MPC
objectivefunction over the wholesimulationhorizon [0; 20]s aswell as the maximal\real"
constraint violation of the solutionsof the exactonlineactive set strategy(or qpsol ) and
the inexactone.
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(a) Standard QP solver (grey: cold start, black:
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(b) Online active set strategy (grey: fully con-
verged, black: real-time variant performing at
most 10 iterations).

Figure5.4: Number of iterationsper samplinginstant for chainexample.
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(a) Standard QP solver (grey: cold start, black:
warm start).
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(b) Online active set strategy (grey: fully con-
verged, black: real-time variant performing at
most 10 iterations).

Figure5.5: Runtimesper samplinginstant for chainexample.
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Chapter 5. Numerical Tests: Chain of Spring Connected Masses

Table 5.5: Optimal MPC objectivefunction valueand maximum\real" infeasibility (con-
straint violation).

Method:
Optimal objective Maximum \real"

function value constraint violations

Exact QP solution 1747.07 0.0019

InexactQP solutionusingthe
onlineactive set strategy 1746.72 0.0056
(at most 10 iterations)

Decreasing the Sampling Time to � = 0:1s

As the runtimes of the online active set strategy are well below 0:2s, we can reducethe

samplingtime to � = 0:1s, i.e. � def= 2 in Eq. (2.2.9), in order to react fasterto inaccuracies
due to the mentionedmodel-plant mismatch(note that the discretisationof the optimal
control problemis not changed).We alsosimulatethis slightly di�erent setupusingqpsol ,
evenif this solver is not able to solvethe occuring optimal control problemswithin this
shorter time period.
We do not illustrate the optimisedtrajectoriesand the propertiesof the QP solutionssince
they are very similar to that depictedin the Figures5.2 and 5.3. The number of QP it-
erationsand runtimesper samplinginstant are summarised in Table 5.6 and illustrated in
Figures5.6 and 5.7, respectively. Again, the MPC objectivefunction over the wholesimu-
lation horizon [0; 20]s (divided by two) as well as the maximal \real" constraint violation
of the solutionsof the exactonlineactive set strategy(or qpsol ) and the inexactoneare
reported in Table5.7.
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(a) Standard QP solver (grey: cold start, black:
warm start).
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(b) Online active set strategy (grey: fully con-
verged, black: real-time variant performing at
most 6 iterations).

Figure5.6: Number of iterationsper samplinginstant for chainexample(� = 0:1s).
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(a) Standard QP solver (grey: cold start, black:
warm start).
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(b) Online active set strategy (grey: fully con-
verged, black: real-time variant performing at
most 6 iterations).

Figure5.7: Runtimesper samplinginstant for chainexample(� = 0:1s).

Table5.6: Comparison of standard QP solverand onlineactive set strategieswith respect
to runtimesand number of iterations(� = 0:1s).

Method:
Maximum Average Maximum no. Averageno.

runtime [ms] runtime [ms] of iterations of iterations

qpsol (cold start) 1005.9 204.1 62 10.1
qpsol (warm start) 1487.1 89.2 166 3.4
onlineactive set strategy

57.8 12.2 11 1.9
(fully converged)
onlineactive set strategy

35.5 13.7 6 2.3
(at most 6 iterations)

Table 5.7: Optimal MPC objective function value and maximum \real" infeasibility (i.e.
constraint violation) for � = 0:1s.

Method:
Optimal objective Maximum \real"

function value constraint violations

Exact QP solution 1658.25 0.0041

InexactQP solutionusingthe
onlineactive set strategy 1686.26 0.0108
(at most 6 iterations)

77



Chapter 5. Numerical Tests: Chain of Spring Connected Masses

5.3 Summary of the Results

The most obviousobservationis that the runtimes of the fully convergedonline active
set strategy are signi�cantly|mo re than an order of magnitude| shorter than that of
qpsol , evenif qpsol is performing warm starts. This is true for both the averageand the
more crucial maximumruntime. Thus, qpsol is far from being able to control the chain
within the given samplingtimes, whereasthe proposedonline active set strategy meets
the real-time requirementswith ease3. Apparently, this results from a smallernumber of
QP iterations (the e�ort for one iteration of qpsol and the online active set strategy is
comparable), but this fact cannot fully explainthe enormousdi�erence.
Someother things are also important: �rst, the primal solutionof the precedingQP often
is not a feasibleinitial value for the next QP, making a phaseI necessary. Within the
initial sevensecondsof the simulationwith � = 0:2s (� = 0:1s), up to 13 (6) phaseI LP
iterations4 werenecessary if the warm start featureof qpsol is used. Instead,a cold start
requiresa phaseI quite rarely (at most oneLP iteration) sincethe origin is often a primal
feasiblepoint5. Second,our online active set strategy can useboth matrix factorisations
from the previousQP, whereasqpsol hasto calculatethem from scratchevenif an initial
guessfor the active set is provided via the warm start feature. Finally, the runtimes of
qpsol may su�er from someoverheadbecauseit also handlesinde�nite QPs. But even
if a special positive de�nite QP variant of qpsol which is also able to maintain matrix
factorisationswould havebeenused,a considerablespeedupof the proposedonlineactive
setmethod canbe expected: a factor of 3-7 compared with cold starting and2-4 compared
with warm starting seemsto be realisticaccording to the data givenin Tables5.4 and 5.6.

Besidesthe comparisonwith qpsol , the resultsof the onlineactivesetstrategy(and its real-
time variant) are interestingfor themselves:�rst, reducingthe samplingtimesalsoreduces
both the maximumand the averagenumber of requiredactive set changesper sampling
instant. This is a usefulproperty from anapplicationpoint of viewbecauseshorter sampling
timesnormally result in a improvedcontrollerperformance.Second,a proper restriction of
the number of working set changesusing the real-timevariant leadsto a further decrease
of the maximumruntime (the averageruntime is only slightly a�ected becausethe working
set changesare more or lesspostponedto later samplinginstants)without becomingmuch
suboptimal or infeasible.For � = 0:2s the optimal objectivefunction valueof the real-time
variant is evena little bit better due to a slight increaseof infeasibilities;for � = 0:1s the
\real" infeasibilitiesremain very small and only 1.7% loss of optimality in the objective
function value is oberserved. Of course,a theoretical performanceguarantee cannot be
givenso far.

Finally, we remark that this test problemwith a state-spacedimensionof 57 and far more
than 3240 � 10114 possibleactive setsis by no meanstractable with the explicit approach
(as presentedin Section2.3.2).

3The reported runtimes do not include the e�o rt for calculating the current gradient vector g(w0) and
constraint vector b(w0) sinceit is almost negligiblecompared with the remaining online computations.

4Using � = 0:1 s, warm started qpsol performs 70 LP iterations and afterwards 166 QP iterations at
t = 4:2 s. Sincethis simulation phaseis quite crucial, this outlier could result in a heavycrashinto the wall.

5Unfortunately, besidesthe number of LP iterations, qpsol providesno possibility to obtain the runtime
requiredfor phaseI.
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Chapter 6

Numerical Tests:
Real-World Diesel Engine

6.1 Mo del Description and Problem Formulation

In this secondtest examplewe aim at controllinga real-world direct injection turbo charged
Dieselengineon a dynamicaltestbenchat the Institute for Designand Control of Mecha-
tronical Systemsof the JohannesKeplerUniversity in Linz (Austria), seeFigure 6.1.

In order to minimisethe emissionswe control the so-calledairpath of the Dieselengine,
which is depictedin Figure 6.2: freshair streamsthrough the compressor into the intake
manifold insidethe engine. From there it o ws into the cylinderswherethe fuel is burnt
for producing the enginetorque. Afterwards, the exhaustgases(especiallyNOx and soot)
stream into the exhaustmanifold from where they can o w in two directions: one part
of them drivesa variable geometryturbocharger VGT which spinsup the compressor by
meansof a commonshaft, and thus stronglyinuencesthe pressurein the intake manifold;
the other part o ws through the exhaustgasrecirculation(EGR) valveand mixeswith the
freshair. This alreadyburnt gasacts as an inert gasduring combustionwhich lowers the
peak temperature and hencereducesthe NOx emissions.In modern Dieselenginesboth
the openingof the EGRvalveas well as the angleof the inlet guidevanesof the VGT can
be controlled.

Modellingof the combustionprocessnaturally leadsto partial di�erential equations, where
temporal aswell asspatialderivativesarepresentandeachexplosionneedsto besimulated|
a nearly impossibletask for today's computing capacity. Another possibility is the usage
of so-calledmean value models (without any spatial e�ects) leading to nonlinear ODE
systems. A mean value model for Dieselenginescan be found in [52], a similar one for
gasolineenginesis developed in Appendix C.
In order to employ our online active set strategy we needa linear processmodel, which
could be derivedby linearising the nonlinear ODE systemfrom a meanvaluemodel at a
certain point. Instead,we follow the ideaspresentedin [66], [67] and directly use linear
identi�cation techniques(see[58] for an introduction). To this end a discrete-timelinear
state-spacemodel (2.2.10c)-(2.2.10d) is obtained from real measurementsby �tting the
input to the output data (via a least-squares-like prediction error approach).
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Chapter 6. Numerical Tests: Real-World Diesel Engine

Figure6.1: Dieselenginetestbenchat the University in Linz.
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Figure6.2: Schematicdiagramof the Dieselengineairpath (inspiredby [52])
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6.1. Mo del Description and Problem Formulation

Sincethe Dieselengine'sdynamicsare highly nonlinear it is not possibleto derivea single
linear model for the whole operating range(i.e. enginespeedfrom 800 to 4500rpm and
fuel injection between0 and 50 mg/ stroke). Therefore the operating rangeis empirically
divided into twelvesmall operating areasand a linear processmodel is identi�ed for each
of them. The subsequentvalidation of all models with real enginedata showed that the
prediction quality of most of the modelsfor the Dieselenginein Linz is good.

Instead of minimising the emissionsdirectly, two processoutputs|namely the massair
o w (MAF) through the compressor and the manifoldabsolutepressure(MAP) insidethe
intake manifold|a re regulatedto certainsetpoints. Thesesetpoints dependon the current
operatingpoint andare optimised(o�ine) with respect to emissions,fuel consumptionand
torque.

Thus, for eachof the twelveoperatingareaswe obtain an identi�ed model of the following
form:

xk+1 = A id xk + E id xp
k + B iduk 8 k 2 N [ f 0g ; (6.1.1a)

yk = C id xk 8 k 2 N [ f 0g ; (6.1.1b)

whereA id 2 R2� 2, B id 2 R2� 2, C id 2 R2� 2. The inputs uk 2 R2 describe the position
of the EGR and the VGT (normalisedto lie between 0 and 100), the outputs yk 2 R2

contain the valuesof MAF and MAP. Moreover,the systemstatesdepend (via the matrix
E id 2 R2� 2) on the currentenginespeedandthe amountof injectedfuel. They are treated
asknown parameterswhich are �xed over the wholepredictionhorizon; for eachtime step
we summarise them in the vector xp

k 2 R2.

Furthermore, the mismatch

xe
k

def= ymeas
k � yk 8 k 2 N [ f 0g (6.1.2)

between the measuredand the predicted outputs is estimatedvia a linear Kalman �lter
(see[66] for details) and is alsoassumedto be constantover the wholepredictionhorizon.

Thesemodi�cations leadto the following augmentedlinear processmodel:
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A 8 k 2 N [ f 0g : (6.1.3b)

Finally, two further augmentationsof the state spaceare necessary: �rst, we introduce
the desiredsetpoint, or reference,valuesof MAF and MAP as additional parameters,say
xr

k 2 R2 (= yref in Eq. (2.2.6)), asthey are constantfor oneoptimisationproblembut may
vary from oneQP to the next. Second,we do not want to control EGRand VGT directly
but their rates of change� uk 2 R2 (uk = uk� 1 + � uk ), instead. Thus, we end up with
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Chapter 6. Numerical Tests: Real-World Diesel Engine

an ODE systemconsistingof ten states:
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After this transformation it is possibleto introduceboundson the valuesaswell ason the
rate of changeof EGRand VGT1:

�
� 10
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�
3:3
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�
8 k 2 N [ f 0g; (6.1.5a)

�
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�
� uk �

�
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�
8 k 2 N [ f 0g: (6.1.5b)

The lower/upper boundson the rate of the EGRvalvehavedi�erent absolutevaluesbecause
it hasto work againsta spring for opening.
The objectivefunction2 is chosenas:

min
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wherex?
i denotesx i , xp

i , xe
i or x r

i for all k0 � i � k0 + np. The prediction horizon of

tp
def= 4s length is dividedinto np

def= 9 equidistantcontrol intervals,eachof 50ms length,
and a tenth onewith length 3.55s.
The dimensionsof the resultingparametric quadratic program (after the condensingpro-
ceduredescribed in Section2.2.3) for the �fth operatingareaare givenin Table6.1. Some
numericalpropertiesof this parametric quadraticprogramare summarisedin Table 6.2.

Table6.1: Problemdimensions(after condensing)of the Dieselengineexample.

Quantity: Dimension:

Dimensionof initial valuevector 10
Number of variables 20
Number of bounds 40
Number of constraints 40

1The givennumericalvaluesare valid for the �fth operating area (enginespeed: 2100-2500rpm, injected
fuel: 0-30mg/ stroke).

2When comparing the input and output weights R and Q, note that the inputs are almost two ordersof
magnitude smaller than the outputs.
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6.2. Numerical Results

Table6.2: Matrix propertiesof the Dieselengineexample,�fth operating area.

Property: Value:

Conditionnumber of Hessianmatrix H 4:64 � 104

Maximum eigenvalueof Hessianmatrix H 1:00 � 100

Minimum eigenvalueof Hessianmatrix H 2:16 � 10� 5

Number of nonzeroelementsof Hessianmatrix H 400 (100:0%)

Conditionnumber of constraintmatrix G 1:32 � 101

Numericalrank of constraintmatrix G 20
Number of nonzeroelementsof constraintmatrix G 110 (27:5%)

6.2 Numerical Results

Weperform closed-loop simulationsusingthe linear modelof the �fth operatingarea(engine
speed: 2100-2500rpm, injected fuel: 0-30mg/ stroke). The enginespeedas well as the
amountof injectedfuel iskept constant|at 2300rpm and15mg/ stroke, respectively|and
the controllershall track two stepchangesof the setpoints for MAF and MAP. The Diesel
engineis simulatedby integratingthe linear modelandadding(uniformly distributed)white
noise3 to the measured(i.e. simulated)MAF andMAP values;a linear Kalman�lter is used
to estimatethe true values.Moreover,white noiseis alsoaddedto the valuesof speedand
injectedfuel as they haveto be measuredin practice. Finally, the samplingtime is chosen
to be � = 50ms. This setupcorrespondsto that described in [66] and was implementedin
a Matlab/Simulink environment[59] (seeFigure6.3).

As in the chain benchmark problem (cp. Chapter 5), the simulationswere conductedby
using:

� qpsol with cold and warm starts,

� onlineactiveset strategywith exactQP solutionand with the number of working set
changeslimited to 10 and 5, respectively.

1
u_opt

OASES
1

w_0

Figure6.3: Implementationof the onlineactiveset strategy(OASES) compiledinto a Mat-
lab/Simulink block.

3We usedthe samenoisesequencefor all simulations by starting the random number generator with a
�xed seedvalue.
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Chapter 6. Numerical Tests: Real-World Diesel Engine

Moreover,the explicit approach(as described in Section2.3.2) wasemployed. In doingso,
we encountereddi�culties dueto exponentialcomplexity of the requiredprecalculation:the
Matlab Hybrid Toolbox [6] failed to precalculatean explicit controller for control horizon
lenghts greater than two (although this most likely resulted from an internal error); for
np = 5 it stoppedafter severalminutesandmore than 15000regionsfoundwith the message
\unexpecteddegeneracycondition". Sincea control horizon of length np = 10 could lead
to about 2:6�1017 critical regions4, 15000shouldbea stronglyunderestimatinglower bound
on their actual number. So, if we make the conservativeassumptionthat everyregion is
described by 10 inequalities,even15000critical regionswould require15000� 102 � 8byte �
12Mbyte of memory (about 150Mbyte for all 12 linear models!). And if a linear search
throughall regionsisperformedonline(asimplementedin the Hybrid Toolbox), half of them
needto be checked on averagewhich requiresabout onemillion oating-p oint operations.
On a Pentium IV processor this may take somehundredmicroseconds,a valuethat is easily
achievedusingour onlineactive set strategy, as we will seesoon.
Therefore, we compare the resultsof the online computation (using a control horizon of
10 intervals)with an explicit controller basedon only onecontrol interval. This controller
comprises25 critical regionsand was usedin [66], [67] to perform real-world closed-loop
experimentson the above-mentionedDieselengine.

We simulatedon the time horizon [0; 30]s with a constant samplingtime of � def= 50ms,
starting from a steady-state. The referencevaluesusedfor MAF and MAP are depicted
in Figure 6.4, together with the optimised outputs. The optimised inputs are shown in
Figure 6.5. Sincethe output trajectories as well as the inputs are nearly identical for all
onlineQP solutions(i.e. alsofor the inexactQP solutionusingthe real-timevariant of the
online active set strategy), only the valuesfor exact online QP solution and that of the
explicit approach (with one control interval) are compared. The number of boundsand
constraints'boundsactiveat the solutionof eachQP aswell as the Euclideannorm of the
QP solutionvector are depictedin Figure 6.6 for the caseof exactonlineQP solution.

The number of QP iterations, i.e. the number of working set recalculationsin caseof the
onlineactive set strategy, and runtimes5 per samplinginstant are illustrated in Figures6.7
and 6.8, respectively. The maximumnumber of iterations, the maximumruntime and the
MPC objective function evaluatedover the whole simulation horizon are summarised in
Table 6.3. In caseof the real-time variant (limited to �ve working set changes)of the
onlineactiveset strategythe valueof the EGRopeningbecomesinfeasibleat onesampling
instant (� 1:8 at 10.1s) and is therefore clipped to 0.

Finally, we want to mention that both matrix factorisationsremainedvery accurateduring
the whole simulation: their maximum deviation from their exact counterparts lay below

4It this casethe maximum number of di�erent optimal active set/critical regionscan be calculatedvia

2n pX

j =0

jX

k =0

2k

 
2np

k

!

� 2j � k

 
2np

j � k

!

;

using a simple combinatorial argument.
5All simulations were performed on an Intel Pentium 4 processor with 2.53GHz (single core), 512kB

L2 cacheand 1GB main memory using gcc 3.3.4 with compiler ag -O3. The runtimes are obtained from
a seriesof measurementswith the linux-speci�c function gettimeofday() and should be accurate in the
order of 10-50 microseconds.

84



6.2. Numerical Results

machineprecision. Furthermore, as expected for this small-scaleexample,computational
overheadfor the alternativestep length determination(as described in Section4.7.1) out-
weighedthe bene�t.
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Figure6.4: Optimisedoutputs for Dieselengineexample.
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Figure6.5: Optimal controls for Dieselengineexample.
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(b) Euclideannorm of online QP solution vector.

Figure 6.6: Properties of the exact online QP solution for the optimally closed-loop con-
trolled Dieselengine.

Table 6.3: Comparison of an standard online QP solver, the online active set strategies
as well as the explicit approach with respect to runtimes, number of iterations and MPC
objectivefunction value.

Method:
Maximum Maximum no. Optimal objective

runtime [ms] of iterations function value

qpsol (cold start) 3.03 21 4851.7
qpsol (warm start) 2.67 21 4851.7
onlineactive set strategy

0.41 22 4851.7
(fully converged)
onlineactive set strategy

0.22 10 4851.8
(at most 10 iterations)
onlineactive set strategy

0.13 5 4851.2
(at most 5 iterations)
explicit approach < 0.01 { 6497.3
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(b) Online active set strategy (grey: fully con-
verged, black: real-time variant performing at
most 5 iterations).

Figure6.7: Number of iterationsper samplinginstant for Dieselengineexample.
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(a) Standard online QP solver (grey: cold start,
black: warm start).
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(b) Online active set strategy (grey: fully con-
verged, black: real-time variant performing at
most 5 iterations).

Figure6.8: Runtimesper samplinginstant for Dieselengineexample.

6.3 Summary of the Simulation Results

The most important observationfrom a practical point of view is that referencetracking
performanceis considerablyimprovedby usingmanycontrol intervals. The period required
for reachinga newMAF/MAP setpoint after a stepchangeis greatly reduced,from about
three to below one second,as can be seenin Figure 6.4. Sincenot only absolutebounds
but also limits on the rate of changeof the manipulatedvariablesare consideredwithin
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the optimisation problem, it shouldbe possibleto directly realisetheseimprovementsin
practice. The necessary optimal control problemformulation with an increasednumber of
degreesof freedomcalls for a fast online QP solver, insteadof an explicit approach, as
arguedabove.

Comparing the resultsof qpsol and our onlineactive set strategyshows that the number
of iterations for exact QP solution are quite similar. This might be due to the fact that
the constraints'boundsexhibit a veryspecialstructure|EGR andVGT are arti�cial states,
introducedin order to deal with their (discretised)derivatives. This probably leadsto a
specialgeometryof the partition of the set of feasibleparametersand thus to similar steps
of the conventionalprimal method and the proposedonlineactiveset strategy. The signi�-
cantly higherruntimeof qpsol at the �rst setpoint changeis not yet fully understood. This
e�ect only occursif many constraintsbecomeactive. It alsopersistswhen the dimension
of the QP is varied. At the secondsetpoint change,whenonly boundsbecomeactive, an
equalnumber of iterationsalso leadsto comparable runtimes.
Nevertheless,this exampleclari�es the advantagesof the real-time variant of the online
active set strategy: almost without becoming suboptimal or infeasible, it was possible
to reducethe number of working set changesby a factor of four (compared with exact
QP solution)! This result justi�es the conjecturethat it might not be necessary to solve
every QP exactly if the initial state is disturbed by measurementnoise. Reducingthe
computationalruntime in this way makesonlineQP solution de�nitely viablefor this kind
of problem,evenif cheap(and henceslow) controllerCPUsare used.

6.4 Real-World Experiments

The simulationresultspresentedsofar encourageour aim to perform closed-loop real-world
experimentsat the testbenchin Linz. Preliminary tests, usinga simpli�ed implementation
of our onlineactivesetstrategywhichcouldhandleboundson the inputs only, werealready
performed in spring 2006. For this purpose,the C++ sourcecode was integrated into a
Matlab/Simulink controller and implementedon the rapid prototyping hardware system
dSPACE [28], which directly controls the engine. The dSPACE hardware is about �ve to
ten timesslower than a commonPentium IV processor; thus, whenlookingat the runtimes
in Section6.2, oneshouldincreasethem in mind by oneorder of magnitude(which means
at most 4ms for the onlineactive set strategy).

Another question is how to switch the controller between di�erent models for di�erent
operating areas. On the one hand, it is possibileto let severalQP solversbe running at
the sametime; on the other hand, if theseswitchesdo not occur too frequently, a cold
start in the new operating area seemsfeasible.A third possibility is to apply the extension
of our online active set strategy to problemswith varying QP matrices (as described in
Section 4.7.2). This might make sensedue to the expectation that the active set will
be similar acrossneighbouring operating areas. The most appropriate approach for this
applicationwould be to allow the QP matricesto changein everyiteration, which directly
leadsto nonlinear MPC.
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Chapter 7

Conclusions and Outlo ok

In this Diplom thesis, we presentedthe main conceptsof model predictive control and
showed that the resulting optimal control problemscan be formulated as quadratic pro-
grams,providedthat the objectivefunction is quadraticand the ODE model aswell as the
constraintsare linear. It was shown that thesequadraticprogramsdepend linearly on the
current state of the controlledprocess;the specialstructure of theseparametric quadratic
programswas analysedand someof their important properties were presented. We also
outlined severalexistingmethods for solvingthesequadratic programs,namelyactive set
methods and the so-calledexplicit approach.

After thesetheoretical preparations a new online active set strategy for the fast solution
of (parametric) quadratic programmingproblemsarising in model predictive control was
developed. This strategy builds on ideasfrom parametric optimisation and fully exploits
the knowledgeof the solutionof the previousquadraticprogrammakingthe assumptionthat
the activesetdoesnot changemuchfrom onequadraticprogramto the next. Furthermore,
we showed how this strategycanbe modi�ed to make it suitablefor real-timeapplications.
We addressedvarious important ingredientsfor an e�cient implementationof our method
and alsodescribed proceduresfor dealingwith degeneratedQPs. Complexity issuesand a
possbileextensionof the proposedmethod to nonlinear model predictivecontrol problems
werediscussed.

Finally, we investigatedthe performanceof our C++ implementationof the online active
set strategywith two test examples:a challengingmedium-scalebenchmark problemand
a small-scaleproblemfor controlling a real-world Dieselenginein a closed-loop manner. In
theseexamples,our strategy turned out to be signi�cantly faster than a standard active
set QP solver(evenif the conventionalwarm start techniqueis used)whileovercomingthe
prohibitive limitations of the explicit approachto MPC optimisation.

Future work will go into three major directions: (i) improvementsand performancetests
of the current implementation, (ii) extensionsof the online active set strategy to other
problemclasses,and (iii) its applicationto real-world control problems.

(i) First, somere�nements of the current implementationfrom a theoretical as well as
from a software engineericalpoint of vieware still conceivable.For example,it might
bepossibleto incorporate so-calledlongstepswhenanactiveconstraintsswapswithin
onesamplingperiod from its upper to its lower bounds(or viceversa),which causes
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two|unnecessary from hindsight|active set changeswithin our current algorithm.
Alsoa theoretical boundon the suboptimality if the homotopy is stoppedprematurely
would be desirable. Furthermore, a more extensivebenchmarking will show if our
strategyis alsosuperior to other QP solverswritten with MPC applicationsin mind.

(ii) Second,we want to adapt the proposedonlineactiveset method in order to make it
suitablefor sequentialquadraticprogrammingfor solvingnonlinear model predictive
controlproblems.Themainideasof this extensionwerealreadydescribedin Chapter4
and will be implementedsoon. Moreover,extendingthe applicability of our method
to (not strictly) convexquadraticor linear programsseemsto be possibleand useful.

(iii) Finally, the simulationsof the Dieselenginepresentedin Chapter6 will form the basis
of closed-loop real-world experiments,scheduledfor the endof the year 2006. Besides
performanceimprovementslike reductionof NOx emissionsor soot formation, these
tests will hopefully give further insight into practical requirementsfor makingmodel
predictive control a viable control strategy for fast applicationsin the millisecond
range.
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Appendix A

Mathematical Basics

In order to easethe presentationsomebasic de�nitions and results are collectedin this
appendix,insteadof giving them wherethey �rst occur. Sinceit is assumedthat the reader
is familiar with all conceptsthey are stated without further explanation.

De�nition A.1 (convex set): A set X � Rn is called convexi�

� x1 + (1 � � )x2 2 X (A.1)

for all x1; x2 2 X and all � 2 [0; 1] � R. �

De�nition A.2 (convex function): A real-valuedfunction f : D � Rn ! R is called
convexi� D is a convexset and

f (� x1 + (1 � � )x2) � � f (x1) + (1 � � )f (x2) (A.2)

for all x1; x2 2 D and all � 2 [0; 1] � R. �

De�nition A.3 (polyhedron): A set X � Rn is called polyhedroni� there exist a matrix
A 2 Rm� n and a vector b 2 Rm suchthat

X =
�

x 2 Rn
�
� Ax � b

	
: (A.3)

�

De�nition A.4 (range space and null space of a matrix): Let a matrix A 2 Rm� n be
given.

(i) Its rangespace(or image) im A is the vector spacespannedby the columnsof A,
i.e.

im A def=
�

Ax
�
� x 2 Rn 	

� Rm : (A.4)

(ii) Its null space(or kernel) kerA is de�ned as

kerA def=
�

x 2 Rn
�
� Ax =

�

	
: (A.5)

�
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Theorem A.1 (Cholesky decomposition): For everymatrix A 2 Sn
� 0 thereexistsa unique

upper triangular matrix R 2 Rn� n with positivediagonalentriessuchthat

A = R0R : (A.6)

Matrix R, or its transposedL def= R0, is called Choleskyfactor of A. �

Proof: Canbe found in [46, p.143]. �

Theorem A.2 (QR factorisation): Let a matrix A 2 Rm� n with m � n be given. Then
the following holds:

(i) There exist an orthonormal matrix V 2 Rm� m and an upper triangular matrix U 2
Rn� n suchthat

A = V
�

U
�

�
: (A.7)

(ii) If A has full row rank there exist an orthonormal matrix V 2 Rm� n and an upper
triangular matrix U 2 Rn� n with positivediagonalentriessuchthat

A = VU : (A.8)

This factorisation is unique. �

Proof: Canbe found in [46, p.223{230]. �

De�nition A.5 (condition number of a matrix): For everymatrix A 2 Rm� n , A 6=
�

,
the condition number condA is de�ned as

condA def=

 Ay




2


 A




2 : (A.9)

ThereinAy denotesthe so-calledpseudoinverseof A whichcoincidewith A � 1 if the matrix
A is invertible (see[41, p.170{172]). �

De�nition A.6 (big-O notation): For everyscalar function f : N ! N we de�ne

O(f ) def=
�

g: N ! N
�
� 9 �; � ; n0 2 N : g(n) � �f (n) + � 8 n � n0

	
(A.10)

as the set of all integer functionswhich are asymptoticallydominatedby f . �
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Appendix B

Implementation Overview

Now we givea conciseoverviewabout the practical implementationof the proposedonline
active set strategy: the software module OASES. It is thought to be a guidelinefor actu-
ally setting up and solving sequencesof strictly convexquadratic programswith OASES;
theoretical issuesand numericalresultswereaddressedin the main part of this thesis.

B.1 Software Mo dule OASES

The software module OASESis written in an object-oriented manner in C++ and comes
alongwith the fully commented1 �les listed in TableB.1. Besidessomestandards libraries
no further software packagesare required.Core of the module is the QProblemclasswhich
is able to store, processand solvestrictly quadratic programsusing the online active set
strategy; it makesuseof severalauxiliary classes.

TableB.1: Complete�le list of the software module OASES.

File name: Description:

OASESQProblem.cpp/hpp/i pp
QProblemclassfor usingthe onlineactive set strategy
for strictly convexQPs

OASESSubjectTo.cpp/hp p/ ipp
QProblemSubjectTo classfor managingworking sets
of constraintsor variablesof a QProblem

OASESBounds.cpp/hpp/i pp
QProblemBoundsclassfor managingworking sets
of variablesof a QProblem

OASESConstraints.cpp/ hpp/i pp
QProblemBoundsclassfor managingworking sets
of constraintsof a QProblem

OASESIndexlist.cpp/hp p/ ipp
QProblemIndexlist classfor managingindex lists
of constraintsor boundswithin the
QProblemSubjectTo class

OASESUtils.cpp/hpp someutilities for working with the QProblemclass

OASESmain.cpp main function samplefor testing the QProblemclass

1All commentscan be interpreted by the documentation systemdoxygen [80].
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B.2 OASESin a Nutshell

The user interacts with the OASESmodule solelyvia the QProblemclass. So, for setting
up a quadraticprograman instanceof the QProblemclasshasto be created. This can be
doneby di�erent constructors, e.g. the following

QProblem::QProbl em( const double* H, const double* A, const double* g,
const double* lb, const double* ub,
const double* lbA, const double* ubA,
int nV, int nC );

which takes the (positive de�nite) Hessianmatrix H, the constraint matrix A, the gradient
vector g, the lower and upper bound vectors lb and ub, the lower and upper constraints'
bound vectors lbA and ubA, the number of variablesnV and the number of constraintsnC
of the quadratic program to be solved. All thesedata must be stored in arrays of type
double (matricesstored row-wisein an one-dimensionalarray). A further constructor for
QPs whitout constraintsexists,as well as constructors for readingthe data directly from
ASCII �les.

After setting up the �rst quadraticprogramit hasto be initialisedvia the function:

int QProblem::init( int& nWSR,bool objFLAG, double& cputime );

It initialisesall internal data structuresand solvesthe quadratic program using the tech-
niquesdescribed in Section 4.4. The argument nWSRspeci�es the maximum number of
working set recalculationsto be performed during the initial homotopy (on output in con-
tains the number of working set recalculationsactually performed). objFLAGindicatesif
alsothe optimal objectivefunction valueshallbe calculated;cputime contains(on output)
the CPU time requiredfor the whole initialisation. The functions init() returnsa status
codewhichindicatesif the initialisationwassuccessful.Alternatively, the function solve()
providesan interfacefor solvingthe quadraticprogramwith a di�erent solver(e.g. qpsol ).

If not only a singlequadraticprogrambut a wholesequenceof QPs shall be solved|as it
is the usualsituation for a MPC problem|the next QP can be solvedusingthe function:

int QProblem::hotstar t( const double* g_new,
const double* lb_new, const double* ub_new,
const double* lbA_new, const double* ubA_new,
int& nWSR,bool objFLAG, double& cputime );

The next QP is speci�ed by passingits gradient vector g new, its lower and upper bound
vectors lb newand ub newaswell as lower and upper constraints'boundvectors lbA new
and ubA new. It is solvedby meansof the online active set strategy using at most nWSR
working set recalculations.objFLAGindicatesif also the optimal objectivefunction value
shall be calculated;cputime contains(on output) the CPU time requiredfor nWSRsteps
alongthe homotopy path. The function hotstart() returnsa statuscodewhich indicates,
e.g., if the optimal solution of the next QP could be found within the given number of
working set recalculationsor if an error occured. Again, special (overloaded)variants for
QPs whitout constraintsor for readingthe data of the next QP directly from ASCII �les
exist.
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Besidesthis main functionality, severalfunctions for obtaining status information are im-
plemented.Among them

double* QProblem::getPri malSo lu ti on ( )
double* QProblem::getDua lS olu ti on ( )
double QProblem::getObj Val( )

for getting the primal-dual solution pair
�
xopt ; yopt

�
and the optimal objective function

valueor

bool QProblem::isInit ial is ed( )
bool QProblem::isSolv ed( )
bool QProblem::isInfe asi bl e( )

for asking if the current QP was initialised, solvedor found to be infeasible. Moreover,
severaloutput functionsare available.

We concludeby presentinga verysimpleexamplefor illustrating the handlingof the OASES
module:

#include "OASES_QProblem.hpp"

int main( )
{

// data of first QP
double H[2*2] = { 1.0, 0.0, 0.0, 0.5 };
double A[1*2] = { 1.0, 1.0 };
double g[2] = { 1.0, 1.0 };
double lb[2] = { 0.5, -2.0 };
double ub[2] = { 5.0, 2.0 };
double lbA[1] = { -1.0 };
double ubA[1] = { 2.0 };

// data of second QP
double g_new[2] = { 1.0, 1.0 };
double lb_new[2] = { 0.0, -1.0 };
double ub_new[2] = { 5.0, -0.5 };
double lbA_new[1] = { -2.0 };
double ubA_new[1] = { 1.0 };

// setting up first QP
QProblem testExample( H,A,g,lb,ub,lbA, ubA, 2,1 );

// solve first QP
double cputime;
int nWSR= 10;
testExample.init ( nWSR,true,cputi me);

// solve second QP
nWSR= 10;
testExample.hots tar t( g_new,lb_new,ub_new,l bA_new,ubA_new, nWSR,true,cputi me);

return 0;
}
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Appendix C

Fast Nonlinear Mo del Predictive
Control of Gasoline Engines

As an examplefor NMPC applicationswe reprint a publication recentlypresentedat the
IEEEInternationalConferenceon Control Applications2006in Munich [31].

Not included in this online version (for copyright reasons)!

C.1 Intro duction

C.2 Mo del Description

C.3 NMPC Problem Formulation

C.4 Algorithm

C.5 Simulation Results

C.6 Conclusions and Future Work

Acknowledgements
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